Skip to main content
Log in

Statistical pairwise interaction model of stock market

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. E. Schneidman, M.J. Berry, R. Segev, W. Bialek, Nature 440, 1007 (2006)

    Article  ADS  Google Scholar 

  2. T. Dal’Maso Peron, F. Rodrigues, Europhys. Lett. 96, 48004 (2011)

    Article  ADS  Google Scholar 

  3. L. Sandoval, I. Franca, Physica A 391, 187 (2012)

    Article  ADS  Google Scholar 

  4. L. Laloux, P. Cizeau, J. Bouchaud, M. Potters, Phys. Rev. Lett. 83, 1467 (1999)

    Article  ADS  Google Scholar 

  5. R. Mantegna, Eur. Phys. J. B 11, 193 (1999)

    Article  ADS  Google Scholar 

  6. J. Onnela, A. Chakraborti, K. Kaski, J. Kertesz, Physica A 324, 247 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. P.E. Vértes, R.M. Nicol, S. Chapman, N. Watkins, D.A. Robertson, E.T. Bullmore, Front. Syst. Neurosci. 5 (2011)

  8. B. Rosenow, P. Gopikrishnan, V. Plerou, H. Stanley, Physica A 314, 762 (2002)

    Article  ADS  MATH  Google Scholar 

  9. S. Bornholdt, Int. J. Mod. Phys. C 12, 667 (2001)

    Article  ADS  Google Scholar 

  10. W. Zhou, D. Sornette, Eur. Phys. J. B 55, 175 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. D. Sherrington, Physica A 384, 128 (2007)

    Article  ADS  Google Scholar 

  12. W.A. Brock, S.N. Durlauf, Rev. Econ. Stud. 68, 235 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Mas-Colell, M. Whinston, J. Green, U.P.F.F. de Cičncies Econňmiques i Empresarials, Microeconomic theory (Oxford University Press, New York, 1995), Vol. 1

  14. E. Jaynes, Phys. Rev. 106, 620 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. R. Kubo, J. Phys. Soc. Jpn 17, 1100 (1962)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. T. Plefka, J. Phys. A 15, 1971 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  17. D. Barber, P. van de Laar, Journal of Artificial Intelligence Research 10, 435 (1999)

    MathSciNet  MATH  Google Scholar 

  18. E. Schneidman, S. Still, M.J. Berry, W. Bialek, Phys. Rev. Lett. 91, 238701 (2003)

    Article  ADS  Google Scholar 

  19. M. Aoki, New Approaches to Macroeconomic Modeling: Evolutionary Stochastic Dynamics, Multiple Equilibria, and Externalities as Field Effects (Cambridge University Press, Cambridge, 1998)

  20. K.H. Fischer, J.A. Hertz, Spin Glasses (Cambridge University Press, Cambridge, 1991)

  21. R. Kindermann, J. Snell, in Markov Random Fields and Their Applications, edited by American Mathematical Society (American Mathematical Society Providence, Rhode Island, 1980)

  22. Y. Roudi, J. Tyrcha, J. Hertz, Phys. Rev. E 79, 051915 (2009)

    Article  ADS  Google Scholar 

  23. S. Dorogovtsev, A. Goltsev, J. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  24. M. Carmeli, J. Stat. Phys. 10, 259 (1974)

    Article  MathSciNet  ADS  Google Scholar 

  25. K. Binder, A. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Bury.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bury, T. Statistical pairwise interaction model of stock market. Eur. Phys. J. B 86, 89 (2013). https://doi.org/10.1140/epjb/e2013-30598-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-30598-1

Keywords

Navigation