Skip to main content
Log in

Electron transport through a quantum dot in the presence of electron-photon and electron-phonon coupling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this study, electron transport through a mesoscopic quantum dot system (QD-system) in the presence of electron-photon (el-pt) and electron-phonon (el-ph) interactions is discussed. The role of both of these interactions is to induce additional steps in the current, and sideband peaks in the differential conductance. By calculating the current and differential conductance of a QD-system in the presence of el-pt or el-ph coupling, we have shown that photon or phonon steps and sideband peaks are induced in the current and differential conductance whenever the applied voltage resonates with their frequency. Furthermore, additional side band peaks are induced in the differential conductance when el-pt and el-ph interactions are simultaneously included in the QD. These extra sideband peaks (ESBPs) are induced when the applied voltage and the photon frequency are in close proximity with the phonon frequency. To investigate the relationship that exists between the photon and phonon frequency in inducing ESBPs in the differential conduction, we have discussed zero applied voltage differential conductance. Under such conditions, ESBP is induced only when the photon frequency resonates with the phonon frequency. With increasing el-ph coupling amplitude, more ESBPs are induced in the differential conductance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.P. Jauho, N.S. Wingreen, Y. Meir, Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  2. G. Platero, R. Aguado, Phys. Rep. 395, 1 (2004)

    Article  ADS  Google Scholar 

  3. A.H. Dayem, R.J. Martin, Phys. Rev. Lett. 8, 246 (1962)

    Article  ADS  Google Scholar 

  4. L.P. Kouwenhoven, S. Jauhar, J. Orenstein, P.L. McEuen, Phys. Rev. Lett. 73, 3443 (1994)

    Article  ADS  Google Scholar 

  5. H. Drexler, J.S. Scott, S.J. Allen, K.L. Campman, A.C. Gossard, Appl. Phys. Lett. 67, 2816 (1995)

    Article  ADS  Google Scholar 

  6. B.J. Keay, S. Zeuner, S.J. Allen, K.D. Maranowski, A.C. Gossard, U. Bhattacharya, M.J.W. Rodwell, Phys. Rev. Lett. 75, 4098 (1995)

    Article  ADS  Google Scholar 

  7. B.J. Keay, S. Zeuner, S.J. Allen, K.D. Maranowski, A.C. Gossard, U. Bhattacharya, M.J.W. Rodwell, Phys. Rev. Lett. 75, 4102 (1995)

    Article  ADS  Google Scholar 

  8. K. Shibata, A. Umeno, K.M. Cha, K. Hirakawa, Phys. Rev. Lett. 109, 077401 (2012)

    Article  ADS  Google Scholar 

  9. C. Bruder, H. Schoeller, Phys. Rev. Lett. 72, 1076 (1994)

    Article  ADS  Google Scholar 

  10. F.M. Souza, T.L. Carrara, E. Vernek, Phys. Rev. B 84, 115322 (2011)

    Article  ADS  Google Scholar 

  11. A. Fujiwara, Y. Takahashi, K. Murase, Phys. Rev. Lett. 78, 1532 (1997)

    Article  ADS  Google Scholar 

  12. J. Koch, F. von Oppen, A.V. Andreev, Phys. Rev. B 74, 205438 (2006)

    Article  ADS  Google Scholar 

  13. S. Sapmaz, P. Jarillo-Herrero, Ya M. Blanter, C. Dekker, H.S.J. van der Zant, Phys. Rev. Lett. 96, 26801 (2006)

    Article  ADS  Google Scholar 

  14. R.G. Knobel, A.N. Cleland, Nature 424, 291 (2003)

    Article  ADS  Google Scholar 

  15. H. Park, J. Park, A. Lim, E. Anderson, A. Allvisatos, P. McEuen, Nature 407, 57 (2000)

    Article  ADS  Google Scholar 

  16. K.P. Huber, G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand Reinhold Company, New York, 1979), Vol. IV

  17. W.G. van der Wiel, S. De Franceschi, J.M. Elzerman, T. Fujisawa, S. Tarucha, L.P. Kouwenhoven, Rev. Mod. Phys. 75, 1 (2003)

    Article  ADS  Google Scholar 

  18. H. Qin, A.W. Holleitner, K. Eberl, R.H. Blick, Phys. Rev. B 64, 241302(R) (2001)

    ADS  Google Scholar 

  19. B. Dong, H.L. Cui, X.L. Lei, Phys. Rev. B 69, 205315 (2004)

    Article  ADS  Google Scholar 

  20. Q.H. Chen, Y.Y. Zhang, T. Liu, K.L. Wang, Phys. Rev. A 78, 051801(R) (2008)

    ADS  Google Scholar 

  21. X. Zianni, Phys. Rev. B 82, 165320 (2010)

    Article  ADS  Google Scholar 

  22. J.-X. Zhu, A.V. Balatsky, Phys. Rev. B 67, 165326 (2003)

    Article  ADS  Google Scholar 

  23. Jie Ren, Jian-Xin Zhu, J.E. Gubernatis, Chen Wang, Baowen Li, Phys. Rev. B 85, 155443 (2012)

    Article  ADS  Google Scholar 

  24. T. Holstein, Ann. Phys. 8, 325 (1959)

    Article  ADS  MATH  Google Scholar 

  25. D.C. Langreth, in Linear and Nonlinear Electron Transport in Solids, Nato Advanced Study Institute, Series B: Physics, edited by J.T. Devreese, V.E. Van Doren (Plenum, New York, 1976), Vol. 17

  26. G.D. Mahan, Many-Particle Physics, 3rd edn. (Plenum, New York, 1990)

  27. Q.-F. Sun, T.-H. Lin, Phys. Rev. B 56, 3591 (1997)

    Article  ADS  Google Scholar 

  28. R. Leturcq, C. Stampfer, K. Inderbitzin, L. Durrer, C. Hierold, E. Mariani, M.G. Schultz, F. von Oppen, K. Ensslin, Nature 5, 327 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Imran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Imran, M. Electron transport through a quantum dot in the presence of electron-photon and electron-phonon coupling. Eur. Phys. J. B 86, 16 (2013). https://doi.org/10.1140/epjb/e2012-30860-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30860-0

Keywords

Navigation