Skip to main content
Log in

Control of Rabi-splitting energies of exciton polaritons in CuI microcavities

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have investigated the active-layer-thickness dependence of exciton-photon interactions in CuI microcavities. The active layer thickness was changed from λ/2 to 2λ, where λ corresponds to an effective resonant wavelength of the lowest-lying exciton. In the CuI active layer, thermal strain removes the degeneracy of the heavy-hole (HH) and light-hole (LH) excitons at the Γ point. Angle-resolved reflectance spectra measured at 10 K demonstrate the strong coupling between the HH and LH excitons and cavity photon, resulting in the formation of three cavity-polariton branches: the lower, middle, and upper polariton branches. The energies of the three cavity-polariton modes as a function of incidence angle are reasonably explained using a phenomenological Hamiltonian to describe the exciton-photon strong coupling. It is found that the interaction energies of the cavity-polariton modes, the so-called vacuum Rabi-splitting energies, are systematically controlled from 29 (50) to 48 (84) meV for the LH (HH) exciton by changing the active layer thickness from λ/2 to 2λ. The active-layer-thickness dependence of the Rabi-splitting energies is semi-quantitatively explained by a simple model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.V. Kavokin, J.J. Baumberg, G. Malpuech, F.P. Laussy, Microcavities (Oxford University Press, Oxford, 2007)

  2. M. Richard, J. Kasprzak, R. André, R. Romestain, Le Si Dang, G. Malpuech, A. Kavokin, Phys. Rev. B 72, 201301(R) (2005)

    ADS  Google Scholar 

  3. R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, K. West, Science 316, 1007 (2007)

    Article  ADS  Google Scholar 

  4. J. Kasprzak, D.D. Solnyshkov, R. André, Le Si Dang, G. Malpuech, Phys. Rev. Lett. 101, 146404 (2008)

    Article  ADS  Google Scholar 

  5. J. Levrat, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, D. Solnyshkov, G. Malpuech, Phys. Rev. B 81, 125305 (2010)

    Article  ADS  Google Scholar 

  6. A. Imamoglu, R.J. Ram, S. Pau, Y. Yamamoto, Phys. Rev. A 53, 4250 (1996)

    Article  ADS  Google Scholar 

  7. S. Christopoulos, G. Baldassarri Höger von Högersthal, A.J.D. Grundy, P.G. Lagoudakis, A.V. Kavokin, J.J. Baumberg, G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Phys. Rev. Lett. 98, 126405 (2007)

    Article  ADS  Google Scholar 

  8. G. Christmann, R. Butté, E. Feltin, J.-F. Carlin, N. Grandjean, Appl. Phys. Lett. 93, 051102 (2008)

    Article  ADS  Google Scholar 

  9. T. Guillet, M. Mexis, J. Levrat, G. Rossbach, C. Brimont, T. Bretagnon, B. Gil, R. Butté, N. Grandjean, L. Orosz, F. Réveret, J. Leymarie, J. Züniga-Pérez, M. Leroux, F. Semond, S. Bouchoule, Appl. Phys. Lett. 99, 161104 (2011)

    Article  ADS  Google Scholar 

  10. N. Antoine-Vincent, F. Natali, D. Byrne, A. Vasson, P. Disseix, J. Leymarie, M. Leroux, F. Semond, J. Massies, Phys. Rev. B 68, 153313 (2003)

    Article  ADS  Google Scholar 

  11. I.R. Sellers, F. Semond, M. Leroux, J. Massies, M. Zamfirescu, F. Stokker-Cheregi, M. Gurioli, A. Vinattieri, M. Colocci, A. Tahraoui, A.A. Khalifa, Phys. Rev. B 74, 193308 (2006)

    Article  ADS  Google Scholar 

  12. F. Réveret, P. Disseix, J. Leymarie, A. Vasson, F. Semond, M. Leroux, J. Massies, Phys. Rev. B 77, 195303 (2008)

    Article  ADS  Google Scholar 

  13. R. Shimada, J. Xie, V. Avrutin, Ü. Özgür, H. Morkoç, Appl. Phys. Lett. 92, 011127 (2008)

    Article  ADS  Google Scholar 

  14. M. Nakayama, S. Komura, T. Kawase, D. Kim, J. Phys. Soc. Jpn 77, 093705 (2008)

    Article  ADS  Google Scholar 

  15. F. Médard, J. Zuniga-Perez, P. Disseix, M. Mihailovic, J. Leymarie, A. Vasson, F. Semond, E. Frayssinet, J.C. Moreno, M. Leroux, S. Faure, T. Guillet, Phys. Rev. B 79, 125302 (2009)

    Article  ADS  Google Scholar 

  16. T. Kawase, D. Kim, K. Miyazaki, M. Nakayama, Phys. Status Solidi B 248, 460 (2011)

    Article  ADS  Google Scholar 

  17. M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyozawa, E. Hanamura, Excitonic Processes in Solids (Springer, New York, 1986), p. 116.

  18. M. Nakayama, A. Soumura, K. Hamasaki, H. Takeuchi, H. Nishimura, Phys. Rev. B 55, 10099 (1997)

    Article  ADS  Google Scholar 

  19. G. Oohata, T. Nishioka, D. Kim, H. Ishihara, M. Nakayama, Phys. Rev. B 78, 233304 (2008)

    Article  ADS  Google Scholar 

  20. M. Nakayama, K. Miyazaki, T. Kawase, D. Kim, Phys. Rev. B 83, 075318 (2011)

    Article  ADS  Google Scholar 

  21. M. Nakayama, M. Kameda, T. Kawase, D. Kim, Phys. Rev. B 83, 235325 (2011)

    Article  ADS  Google Scholar 

  22. A. Tredicucci, Y. Chen, V. Pellegrini, M. Börger, L. Sorba, F. Beltram, F. Bassani, Phys. Rev. Lett. 75, 3906 (1995)

    Article  ADS  Google Scholar 

  23. H. Ajiki, H. Ishihara, J. Phys. Soc. Jpn 76, 053401 (2007)

    Article  ADS  Google Scholar 

  24. H. Oka, G. Oohata, H. Ishihara, Appl. Phys. Lett. 94, 111113 (2009)

    Article  ADS  Google Scholar 

  25. D. Kim, M. Nakayama, O. Kojima, I. Tanaka, H. Ichida, T. Nakanishi, H. Nishimura, Phys. Rev. B 60, 13879 (1999)

    Article  ADS  Google Scholar 

  26. Y. Chen, A. Tredicucci, F. Bassani, Phys. Rev. B 52, 1800 (1995)

    Article  ADS  Google Scholar 

  27. G. Panzarini, L.C. Andreani, A. Armitage, D. Baxter, M.S. Skolnick, V.N. Astratov, J.S. Roberts, A.V. Kavokin, M.R. Vladimirova, M.A. Kaliteevski, Phys. Rev. B 59, 5082 (1999)

    Article  ADS  Google Scholar 

  28. P. Torchio, A. Gatto, M. Alvisi, G. Albrand, N. Kaiser, C. Amra, Appl. Opt. 41, 3256 (2002)

    Article  ADS  Google Scholar 

  29. E.O. Kane, J. Phys. Chem. Solids 1, 249 (1957)

    Article  ADS  Google Scholar 

  30. K. Miyazaki, D. Kim, T. Kawase, M. Kameda, M. Nakayama, Jpn J. Appl. Phys. 49, 042802 (2010)

    Article  ADS  Google Scholar 

  31. C.F. Klingshirn, Semiconductor Optics (Springer, Berlin, 2007), p. 73

  32. W. Staude, Phys. Status Solidi B 43, 367 (1971)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaaki Nakayama.

Additional information

Contribution to the Topical Issue “Excitonic Processes in Condensed Matter, Nanostructured and Molecular Materials”, edited by Maria Antonietta Loi, Jasper Knoester and Paul H. M. van Loosdrecht.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakayama, M., Kameda, M., Kawase, T. et al. Control of Rabi-splitting energies of exciton polaritons in CuI microcavities. Eur. Phys. J. B 86, 32 (2013). https://doi.org/10.1140/epjb/e2012-30503-6

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30503-6

Keywords

Navigation