Skip to main content
Log in

Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a theory which deals with the structure and interactions of volume elements in liquid helium II. The approach consists of two nested models linked via parametric space. The short-wavelength part describes the interior structure of the fluid element using a non-perturbative approach based on the logarithmic wave equation; it suggests the Gaussian-like behaviour of the element’s interior density and interparticle interaction potential. The long-wavelength part is the quantum many-body theory of such elements which deals with their dynamics and interactions. Our approach leads to a unified description of the phonon, maxon and roton excitations, and has noteworthy agreement with experiment: with one essential parameter to fit we reproduce at high accuracy not only the roton minimum but also the neighboring local maximum as well as the sound velocity and structure factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.P. Pitaevskii, Zh. Eksp. Teor. Fiz. 31, 536 (1956) [Sov. Phys. JETP 4, 439 (1956)]

    Google Scholar 

  2. S. Sunakawa, S. Yamasaki, T. Kebukawa, Prog. Theor. Phys. 41, 919 (1969)

    Article  ADS  Google Scholar 

  3. A.F.G. Wyatt, N.A. Lockerbie, R.A. Sherlock, Phys. Rev. Lett. 33, 1425 (1974)

    Article  ADS  Google Scholar 

  4. F.R. Hope, M.J. Baird, A.F.G. Wyatt, Phys. Rev. Lett. 52, 1528 (1984)

    Article  ADS  Google Scholar 

  5. M.A.H. Tucker, A.F.G. Wyatt, Science 283, 1150 (1999)

    Article  ADS  Google Scholar 

  6. L.D. Landau, Zh. Eksp. Teor. Fiz. 11, 592 (1941) [translated in J. Phys. USSR 5, 71 (1941)]

    Google Scholar 

  7. J.L. Yarnell, G.P. Arnold, P.J. Bendt, E.C. Kerr, Phys. Rev. 113, 1379 (1959)

    Article  ADS  Google Scholar 

  8. D.G. Henshaw, A.D.B. Woods, Phys. Rev. 121, 1266 (1961)

    Article  ADS  Google Scholar 

  9. E.C. Svensson, V.F. Sears, A.D.B. Woods, P. Martel, Phys. Rev. B 21, 3638 (1989)

    Article  ADS  Google Scholar 

  10. H. Yamaguchi, Engineering Fluid Mechanics (Springer, 2008), p. 573

  11. V.I. Kruglov, M.J. Collett, Phys. Rev. Lett. 87, 185302 (2001)

    Article  ADS  Google Scholar 

  12. I.N. Adamenko, K.E. Nemchenko, I.V. Tanatarov, Phys. Rev. B 67, 104513 (2003)

    Article  ADS  Google Scholar 

  13. V.I. Yukalov, Phys. Part. Nucl. 42, 460 (2011)

    Article  Google Scholar 

  14. F. London, Nature 141, 643 (1938)

    Article  ADS  Google Scholar 

  15. L. Tisza, Nature 141, 913 (1938)

    Article  ADS  Google Scholar 

  16. L. Tisza, Phys. Rev. 72, 838 (1947)

    Article  ADS  Google Scholar 

  17. P.L. Kapitsa, Nature 141, 74 (1938)

    Article  ADS  Google Scholar 

  18. J.F. Allen, Nature 141, 234 (1938)

    ADS  Google Scholar 

  19. R.A. Cowley, A.D.B. Woods, Can. J. Phys. 49, 177 (1971)

    Article  ADS  Google Scholar 

  20. F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)

    Article  ADS  Google Scholar 

  21. K.A. Brueckner, K. Sawada, Phys. Rev. 106, 1117 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  22. K.A. Brueckner, K. Sawada, Phys. Rev. 106, 1128 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. T.D. Lee, K. Huang, C.N. Yang, Phys. Rev. 106, 1135 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. L. Liu, L.S. Liu, K.W. Wong, Phys. Rev. 135, A1166 (1964)

    Article  ADS  Google Scholar 

  25. A.P. Ivashin, Y.M. Poluektov, Cent. Eur. J. Phys. 9, 857 (2011)

    Article  Google Scholar 

  26. R.P. Feynman, Phys. Rev. 94, 262 (1954)

    Article  ADS  MATH  Google Scholar 

  27. R.P. Feynman, M. Cohen, Phys. Rev. 102, 1189 (1956)

    Article  ADS  MATH  Google Scholar 

  28. P. Nozieres, J. Low Temp. Phys. 137, 45 (2004)

    Article  ADS  Google Scholar 

  29. R.A. Aziz, V.P.S. Nain, J.S. Carley, W.L. Taylor, G.T. McConville, J. Chem. Phys. 70, 4330 (1979)

    Article  ADS  Google Scholar 

  30. V. Apaja, M. Saarela, Phys. Rev. B 57, 5358 (1998)

    Article  ADS  Google Scholar 

  31. K.T. Tang, J.P. Toennies, C.L. Liu, Phys. Rev. Lett. 74, 1546 (1995)

    Article  ADS  Google Scholar 

  32. C.E. Campbell, E. Krotscheck, Phys. Rev. B 80, 174501 (2009)

    Article  ADS  Google Scholar 

  33. E.P. Gross, Nuov. Cim. 20, 454 (1961)

    Article  MATH  Google Scholar 

  34. L.P. Pitaevskii, Sov. Phys. JETP 13, 451 (1961)

    MathSciNet  Google Scholar 

  35. C.J. Pethick, H. Smith, Bose-Einstein Condensation in Dilute Gases (Cambridge, UK, CUP, 2004), p. 569

  36. V. Efimov, Yad. Fiz. 12, 1080 (1970) [Sov. J. Nucl. Phys. 12, 589 (1971)]

    Google Scholar 

  37. V. Efimov, Phys. Lett. B 33, 563 (1970)

    Article  ADS  Google Scholar 

  38. V. Efimov, Comments Nucl. Part. Phys. 19, 271 (1990)

    Google Scholar 

  39. E. Nielsen, D.V. Fedorov, A.S. Jensen, J. Phys. B: At. Mol. Opt. Phys. 31, 4085 (1998)

    Article  ADS  Google Scholar 

  40. W. Schöllkopf, J.P. Toennies, J. Chem. Phys. 104, 1155 (1996)

    Article  ADS  Google Scholar 

  41. E.A. Kolganova, A.K. Motovilov, W. Sandhas, Few-Body Syst. 51, 249 (2011)

    Article  ADS  Google Scholar 

  42. G. Rosen, Phys. Rev. 183, 1186 (1969)

    Article  ADS  Google Scholar 

  43. I. Bialynicki-Birula, J. Mycielski, Ann. Phys. 100, 62 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  44. I. Bialynicki-Birula, J. Mycielski, Phys. Scr. 20, 539 (1979)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  45. A.V. Avdeenkov, K.G. Zloshchastiev, J. Phys. B: At. Mol. Opt. Phys. 44, 195303 (2011)

    Article  ADS  Google Scholar 

  46. K.G. Zloshchastiev, Acta Physica Polonica B 42, 261 (2011)

    Article  Google Scholar 

  47. N.N. Bogoliubov, Acad. Sci. USSR J. Phys. 11, 23 (1947)

    MathSciNet  Google Scholar 

  48. A. Bijl, Physica 7, 869 (1940)

    Article  ADS  Google Scholar 

  49. J.R. Pellam, C.E. Squire, Phys. Rev. 72, 1245 (1947)

    Article  ADS  Google Scholar 

  50. K.R. Atkins, C.E. Chase, Proc. Phys. Soc. A 64, 826 (1951)

    Article  ADS  Google Scholar 

  51. A. Van Itterbeek, G. Forrez, Physica 21, 133 (1954)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. G. Zloshchastiev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zloshchastiev, K.G. Volume element structure and roton-maxon-phonon excitations in superfluid helium beyond the Gross-Pitaevskii approximation. Eur. Phys. J. B 85, 273 (2012). https://doi.org/10.1140/epjb/e2012-30344-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30344-3

Keywords

Navigation