
Eur. Phys. J. B (2013) 86: 13
DOI: 10.1140/epjb/e2012-30292-x

Regular Article

THE EUROPEAN
PHYSICAL JOURNAL B

Risks of an epidemic in a two-layered railway-local area traveling
network

Zhongyuan Ruan1, Pakming Hui2, Haiqing Lin2, and Zonghua Liu1,a

1 Department of Physics, East China Normal University, Shanghai 200062, P.R. China
2 Department of Physics, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong

Received 5 April 2012 / Received in final form 13 October 2012
Published online 21 January 2013 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2013

Abstract. In view of the huge investments into the construction of high speed rails systems in USA, Japan,
and China, we present a two-layer traveling network model to study the risks that the railway network poses
in case of an epidemic outbreak. The model consists of two layers with one layer representing the railway
network and the other representing the local-area transportation subnetworks. To reveal the underlying
mechanism, we also study a simplified model that focuses on how a major railway affects an epidemic. We
assume that the individuals, when they travel, take on the shortest path to the destination and become
non-travelers upon arrival. When an infection process co-evolves with the traveling dynamics, the railway
serves to gather a crowd, transmit the disease, and spread infected agents to local area subnetworks. The
railway leads to a faster initial increase in infected agents and a higher steady state infection, and thus
poses risks; and frequent traveling leads to a more severe infection. These features revealed in simulations
are in agreement with analytic results of a simplified version of the model.

1 Introduction

Countries such as the USA, Japan, and China are in-
vesting heavily on high speed rails [1] and other modern
transportation systems like highways, subways and air-
ports. They are essential for sustaining economic growth,
but they also enhance the risk of a pandemic, as evi-
denced by the spread of SARS (severe acute respiratory
syndrome), avian influenza and H1N1 swine influenza in
the past decade. A highly desirable goal is to mitigate
an epidemic while keeping the convenience of massive and
rapid transportation. An important step towards this goal
is to understand how modern transportation systems such
as high speed trains could affect the dynamics of an epi-
demic and how possibly one could lower the risk.

Recent progress on epidemic spreading in complex net-
works guided us to focus on epidemics in multi-layered
networks. Prior to the observation of the small-world
(SW) and scale-free (SF) properties in many real-world
networks, studies on epidemics were mainly focused on
random or Erdos-Renyi (ER) networks in which every
pair of nodes in a system has a certain probability to
be connected, and fully mixed populations [2]. A main
result is that there exists an epidemic threshold and
an outbreak occurs only when the contagious rate is
higher than the threshold. The discovery of SW and SF
properties has led to much work on the effects of net-
work topology on epidemics as related to the epidemic
threshold [3–10], epidemics in SW networks [11,12], SF
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networks [13–18], community networks [19,20], networks
with mobile agents [21–30], and immunization [31–36].
For studies on epidemics in a static network in which
each node represents an immobile agent, it was found
that a finite epidemic threshold does not exist in SF net-
works in the thermodynamic limit, indicating that a tiny
initial infection can eventually spread [4–8,10]. The re-
sult is important in that it sheds light on the alarming
risk of SARS, avian influenza, H1N1 swine influenza and
other diseases. There are also studies on systems of mul-
tiple agents on a node with infectious process occurring
only among agents staying on the same node, coupled
with a diffusion of the agents among the nodes forming
a modified version of reaction-diffusion processes [28,29].
More recently, there are studies on how human dynamics
would affect an epidemic. These include studies on adap-
tive rewiring of connections among agents so as to avoid
infections [37], agents traveling towards a destination in-
stead of along a diffusive path and the effects of continual
re-grouping [25,30,38]. The pattern of how a virus spreads
among mobile phones [26] was also studied. These stud-
ies are representative of the trend of moving progressively
closer to real-life situations.

Despite the progress, much remains to be done as
real-world functional networks almost always involve the
interconnection between two or more networks. An ap-
proach is to study systems consisting of multi-layered
networks [39–43]. For example, traffic networks con-
structed based on flights, trains, and coaches are typ-
ical multi-layered networks. The epidemic spreading on

http://www.epj.org
http://dx.doi.org/10.1140/epjb/e2012-30292-x


Page 2 of 8 Eur. Phys. J. B (2013) 86: 13

airport networks has been well studied [28,44–46] and an
interesting work focused on the multiscale mobility net-
work consisting of short-scale commuting flows and long-
range airline traffic [47]. Although these works have made
a big progress in epidemic spreading, they still suffer from
two unrealistic aspects. One concerns the assumption that
agents are continually diffusing from one node to another.
In reality, people travel to a desired destination and stop
for a while before taking the next journey. Another as-
sumption is that an airport and the local area that it
serves are collectively represented by a node at which
the agents interact in a well-mixed fashion. However, the
local-area transportation network that brings people to
and from the airport is quite different from the routes
that fly people from one place to another. Thus, consid-
ering the movement of agents without distinguishing the
local-area supporting network would be too simplistic for
studying epidemics in the presence of travelers. The prob-
lem, instead, is that of an epidemic in a double-layered
network. In the present work, we study an infection pro-
cess in two-layer traveling network models. In view of
the plans of building high speed trains in US, Japan and
China, the model will be introduced within the context
of major railways with stations supported by local-area
subnetworks, and agents travel from one place within a
subnetwork to another via the railway when an infection
process co-evolves. In the USA, for example, the plan is to
construct high speed rails with trains running at 220 mph
supported by local-area networks running at 110 mph [1].
Our model incorporates the novel features that (i) people
travel with an intended destination and their traveling
paths connect the nodes in different local subnetworks in
a shortest path; (ii) the railway serves to gather travelers
and transmit infected individuals between different local
subnetworks; and (iii) infections take place both on the
railway and inside the local subnetworks. Numerical sim-
ulations show that both the single railway and the railway
network accelerate the spreading of disease significantly,
when compared with that in a corresponding ER network.
Frequent traveling, as always required in modern city life,
leads to a higher infection level and is thus risky. Raising
the speed, as currently planned in many countries, would
reduce infections. A qualitative understanding of the re-
sult is presented via an analysis of a simplified version of
our model.

This paper is organized as follows. In Section 2, we
introduce a two-layered railway-local area traveling net-
work model. In Section 3, we simplify the model to one
that consists only of a single major railway serving the lo-
cal areas to address how a railway accelerates spread of an
epidemic. In Section 4, we present a theoretical framework
to explain the results of the simplified railway-local area
traveling network. Results are summarized in Section 5.

2 Two-layer railway-local area traveling
network model

We first study epidemics in a two-layered network model
where one layer is a railway network and the other is

Fig. 1. (Color online) Schematic diagram of the two-layered
railway-local area traveling network. The big circles outline the
local-area subnetworks. The open circles represent local towns
and the solid dots represent the railway stations serving dif-
ferent local areas. For clarity, the railway network is displaced
vertically from the local area subnetworks.

a ground transport network, with connections between
them. The layer consisting of the railway network is, in
general, composed of multiple major railways that in-
tersect at big cities. Considering the facts that there is
only one railway station in a city in general and each
city has its local-area transport network, we assume that
each node of the railway network is accompanied with
and connected to a local-area subnetwork. For simplicity,
both the railway network and each local-area subnetwork
are taken to be ER random networks. Figure 1 shows the
two-layered railway-local area traveling network schemat-
ically. For clarity, the railway network is displaced ver-
tically from the local area subnetworks, illustrating the
two-layered structure. Traveling within an area invokes
only the local-area subnetwork. In making a journey from
one place to another, a traveler typically takes a path con-
sisting of three parts: the traveler will go to the railway
station via the local area subnetwork, use the railway net-
work, and then another local area subnetwork to arrive at
the destination. For each part of the journey, the shortest
path is taken.

More specifically, the model can be constructed as fol-
lows. Let m = 50 be the total number of nodes in the
railway network and thus the number of local area subnet-
works. This value of m is reasonable in that there are, for
example, 48 major railway stations in China [48]. For each
subnetwork i (i = 1, . . . , m), it is constructed as an ER
random network consisting of Mi = 100 nodes (towns) and
the probability q of having a connection between any two
nodes is q = 0.1, resulting in a mean degree of 〈k〉 = 10.
Therefore, the whole network has M = 5000 nodes. For
each subnetwork, the node with the highest degree is
chosen to be the railway station (black dots in Fig. 1)
serving the local area. To construct the railway network,
the m = 50 railway stations are also connected as an ER
network with an average degree 〈k〉 = 10.
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To study infection in the two-layer network, we intro-
duce people into the system. A total of N = 5 × 104 per-
sons, i.e. on average, N/M = 10 persons per node are in-
troduced. Initially, Ni of them are distributed into the ith
subnetwork, and they randomly occupy the nodes, but
leaving the railway station empty. Each person is in one
of two states: traveling or non-traveling. We assume that
a non-traveling person has a probability p to turn into a
traveling person at each time step, thus a person will stay
in a place for an average of 1/p time steps before starting
another journey. The initial condition implies that there
are pNi travelers and (1 − p)Ni non-travelers in the ith
subnetwork.

People tend to take the shortest path towards their
destination when they travel [30]. This is similar to the
routing strategy for sending messages in the Internet [49].
This process is highly directional, and completely differ-
ent from the non-directional random diffusion of particles
on a network in which every neighboring node has a finite
probability of receiving a particle. When a person turns
into a traveler at a node i, he picks a node j randomly
in the whole network as his destination. A railway station
cannot be chosen as journey destination, as it serves only
as a stop to get off for destinations in its local area. To
model human travelers, every traveler takes on the short-
est path. For nodes i and j belonging to different local
areas, a traveler gets to the railway station via the short-
est path in his local subnetwork, takes the railway to the
railway station that node j belonging to, and then follows
the shortest path to travel to the destination via the local-
area subnetwork. The traveler moves one node per time
step on the shortest path. Upon arrival at the node j, a
traveler turns into a non-traveler and stays there, until
his next journey begins. Therefore, there are both trav-
elers and non-travelers on the nodes in the subnetworks,
and there are only travelers in the railway stations.

To study how the railway network influences the epi-
demic spreading, we will study the susceptible-infected-
susceptible (SIS) model of an epidemic, where S and I
represent the susceptible and infected individuals. The SIS
model is for diseases that cannot be immunized, and an in-
fected person would recover and become susceptible again,
as in tuberculosis and gonorrhea [4,7,8,15,19]. Following
reference [28], infections take place only among persons lo-
cated in the same node. Every susceptible may be infected
by each of the infected persons at the same node, with each
infection occurring at a probability β. Therefore, a suscep-
tible at the node i will become infected with the proba-
bility 1− (1 − β)ni,I , where ni,I is the number of infected
persons at the node i [28]. As many persons are allowed to
be in a node, it is analogous to a bosonic reaction-diffusive
process in networks [22,28–30], but now generalized to di-
rected movements along the shortest paths.

An infection process is initialized by having 1% of
the people randomly infected. The probability for a non-
traveler to start a journey is p = 0.05, unless specified
otherwise. The recovery probability is μ = 0.1. A mea-
surement of the extent of an epidemic is the density of in-
fected persons in the system defined by ρI =

∑M
i=1 ni,I/N .

Fig. 2. (Color online) Results for SIS model. (a) ρI as a func-
tion of time t for p = 0.05, μ = 0.1 and β = 0.02, for the
two-layer railway-local area traveling network (solid line) and
a corresponding ER random network (dashed line) with the
same number of nodes and mean degree. (b) The steady-state
value of ρI as a function of β/μ, for p = 0.05 and μ = 0.1,
in the two-layer network (squares) and the corresponding ER
network (circles). (c) The effects of more frequent travelers, as
represented by a higher traveling probability p. ρI (squares) as
a function of p, for β = 0.02 and μ = 0.1. Results are compared
with that in the corresponding ER network (circles).

Figure 2a shows how ρI varies with time for the infection
probability β = 0.02 (solid line) in the SIS model. The
results show a rapid increase at short time followed by
reaching a steady-state value. It should be noted that the
choice of values for β and μ is taken from those in connec-
tion to the spread of H1N1 [50].

To demonstrate the effects a two-layered railway-local-
area network, it is illustrative to compare results with a
reference single-layer ER random network that has the
same number of nodes M = 5000 and the same average de-
gree 〈k〉 = 10 as in the two-layered railway-local-area net-
work. Simulations on this reference network show a slower
increase in ρI at short time (see dashed line in Fig. 2a)
and a smaller steady-state value. Thus, the railway net-
work makes the epidemic more severe. Figure 2b shows
the results of the steady-state ρI as a function of β/μ for
both the two-layered railway-local-area and reference ER
networks. The key feature is that a finite ρI results for
a smaller value of β/μ in the presence of a railway net-
work, indicating that the presence of the railway network
enhances the spread.

Modern societies are characterized by frequent travel-
ing, for reasons including a farther distance between home
and workplace, traveling for business and for pleasure.
There are periodic high traveling seasons, with an ex-
treme example given by the over 0.3 billion long-distance
travelers in China during the lunar new year period and
most of them take a combination of railway and local area
transportation. These situations correspond to a higher
value of p in our models. Figure 2c shows how the steady
state value of ρI varies with p in the SIS model with
β = 0.02 and μ = 0.1, for both the two-layer railway-local
area travel network (squares) and the corresponding ER
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Fig. 3. ρI versus p on the two-layer railway-local area travel-
ing network for μ = 0.1 and β = 0.008.

network (circles). This corresponds to β/μ = 0.2 and ρI is
high for p = 0.05 from Figure 2b. Figure 2c shows that ρI

drops gradually as p decreases until in a range of small p-
values then ρI drops rapidly to a very small value. Thus,
frequent traveling leads to a higher risk of spreading a dis-
ease. When compared with the reference ER network, the
two-layer network leads to a more severe infection. When
more people become travelers, the gathering of suscepti-
ble and infected travelers on the railway network has the
effects of enhancing infections on the railway nodes and
spreading the diseases among different local areas.

A higher p corresponds to more travelers so that they
will be gathered on the railway leading to a higher ρI and
a higher β will also lead to a higher ρI . Therefore, the
parameters p and β may play a similar role. This can be
better seen if we look at a case where ρI = 0 for p = 0,
as for β = 0.008. Figure 3 shows that ρI as p increases
for β = 0.008. The results show that there is a thresh-
old pc ≈ 0.02 such that for p > pc, ρI becomes finite. This
phenomenon is only found in two-layered networks. With
an increasing p, more people become travelers and the
number of people in the railway nodes increases, making
it easier for an epidemic outbreak.

3 Simplified two-layer railway-local area
traveling network

The entire railway network in a country or a continent
typically consists of a few major railways intersecting at
some major cities. It is, therefore, also important to study
the effects of a single major railway serving a number of lo-
cal areas, via a simplified version of the two-layer traveling
network constructed as follows. Let m local area subnet-
works be constructed in the same way as above, with the
node of the highest degree in each subnetwork becoming
the major train station of the local area. These m major
train stations are then connected in a sequence by a single
major railway, as depicted schematically in Figure 4.

We consider systems consisting of m = 10 local-area
subnetworks. Each local subnetwork i consists of Mi = 100
nodes (towns) forming an ER network of mean degree
〈k〉 = 10, thus there are a total of M =

∑m
i=1 = 1000

Fig. 4. (Color online) Schematic diagram showing the sim-
plified railway-local area network model consisting of a single
major railway stopping at main stations, each supported by a
local-area subnetwork (big circules) serving smaller cities and
towns (nodes inside big circles). There are travelers and non-
travelers in the towns, while there are only travelers at the
railway stations.

nodes. Keeping the same average number of persons
N/M = 10 per node, there are altogether N = 104 in-
dividuals. The probability for a non-traveler to start a
journey is p = 0.05, unless specified otherwise. The recov-
ery probability in the SIS model is μ = 0.1. The infection
process is initialized by randomly choosing 1% of the peo-
ple as infected.

Figure 5a shows how ρI varies with time (solid line),
for an infection probability β = 0.02. Results are com-
pared to that of an ER reference network with the same
total number of nodes and mean degree (dashed line). The
results are similar to those in Figure 2a. The presence of
the major railway leads to a more rapid increase at short
time and a more severe epidemic as given by the higher
steady-state value of ρI . For m subnetworks of equal size, a
traveler has a chance of 1−1/m (which is 90% for m = 10)
to go to a destination in a different subnetwork and there-
fore will travel on the railway. Most travelers, infected
and susceptible, will meet on the railway. This enhances
the infection process on the railway and also brings more
infected persons to the destinations for further infections.

Figure 5b shows the results for a higher infection prob-
ability of β = 0.06. While the increase in ρI is still faster
in the railway-local area network than in the ER reference
network, the steady-state values are almost the same for
the two networks. In this case, infection is effective in the
local-area nodes and on the railway, and a large portion
of the population is infected. The larger value of β implies
that no gathering of infected and susceptible travelers is
needed for the infection to be enhanced. Similar calcula-
tions are carried out for different values of β. The results
of the steady-state ρI are shown as a function of β/μ in
Figure 5c for both the railway-local area and the ER ref-
erence networks. We see that there exists a finite ρI for a
smaller value of β/μ in the presence of the major railway.
This is similar to what we have observed in Figure 2. Thus,
the enhanced epidemics in the two-layer railway-local area
traveling network is due to the enhanced epidemics of each
major railway.
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Fig. 5. (Color online) ρI as a function of time t for (a) β = 0.02
and (b) β = 0.06. The darker (black) lines give the results of the
railway-local-area network model, and the lighter (red) lines
give the results of an ER random network containing the same
total number of nodes and mean degree. (c) ρI as a function
of β/μ, for the railway-local-area network model (squares) and
ER random network (circles).

The railway poses an additional risk factor. By gath-
ering more people on to the nodes that the major railway
serves, there is the risk of an enhanced infection proba-
bility β at these nodes, e.g., due to the closer separation
between people, on top of the enhanced infection through
the larger ni,I . This can be modeled by imposing a larger
value of β at the railway stations as compared to a smaller
value β0 at the other local-area nodes. This does not alter
the movement and the grouping of people in the nodes.
Figure 6a shows that ρI only increases slightly with an
enhanced infection probability β/β0 > 1, with β0 = 0.02.
To complete the study, Figure 6b shows the results for
a reduced recovery probability μ/μ0 < 1 in the railway
stations, where μ0 = 0.1 is the recovery probability at the
local-area nodes. Similar to an increased β, a suppressed μ
also increases ρI .

We also studied the effects of the traveling proba-
bility p. Figure 7a shows the steady state value of ρI

for different values of p in the railway-local-area network
(squares) and the corresponding ER network (circles).
While ρI increases with p in both cases, the increase is
much pronounced in the railway-local-area network. With
more travelers crowding the railway, the level of infec-
tion in the population becomes significantly higher. When
more people become travelers, the gathering of suscepti-
ble and infected travelers on the railway has the effect of
enhancing the fraction of infected agents on the railway.
Let ρT

I be the ratio of the number of infected agents in
the steady state on the railway to N . Figure 7b displays
how ρT

I increases with p. Combining with Figure 7a, we
note that while both ρI and ρT

I increase gradually with p,
the ratio ρT

I /ρI increases much rapidly with p, indicating
the risk that a railway poses in spreading a disease when
people travel frequently.

Railways are an essential infrastructure for countries
seeking economic growth, but they unavoidably gather

Fig. 6. Effects of enhancing the infection probability β and re-
ducing the recovery probability μ at the main railway stations
in a system with N = 104 persons. (a) ρI as a function of β/β0

with β0 = 0.02 and μ = μ0 = 0.1. (b) ρI as a function of μ/μ0

with μ0 = 0.1 and β = β0 = 0.02.

Fig. 7. (Color online) Effects of the traveling probability p on
epidemics. (a) ρI as a function of p for both the railway-local
area network (squares) and the corresponding ER network (cir-
cles); (b) ρT

I as a function of p.

people and pose serious risk of an epidemic. In recent
years, we see major initiatives for high speed trains in dif-
ferent countries, for the reason of controlling carbon emis-
sions among others. China’s network of high-speed trains
run at a top speed of 220 mph (∼354 km h−1). In the USA,
there is a plan to build a $500-billion 220 mph railway
network linking 80% of Americans by 2030 [1]. In Japan,
a $64-billion line connecting Tokyo and Nagoya that runs
at 310 mph (∼500 km h−1) will complete by 2045, cutting
the traveling time by 58%. These high speed trains run
faster, stop at fewer main stations, and are supported by
bigger local-area networks serving more smaller cities and
towns. To study how these features alter the extent of an
infection, we present results of ρT

I and ρI for two modi-
fied systems with a reduced number of m = 5 and m = 2
main stations in Figure 8. Here, the population size (N =
104 agents), the total number of nodes (M = 103), and
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Fig. 8. (Color online) Effects of enhanced train speeds as rep-
resented by a reduced value of m. (a) ρI(t) for m = 2, 5, 10 at
short time. (b) ρT

I as a function of p for systems with m = 10,
m = 5, and m = 2 main railway stations, representing higher
speeds of the train.

the average degree (〈k〉 = 10) are retained. Therefore,
the 5 (2) subnetworks for m = 5 (m = 2) each serves a
local area with 200 (500) nodes. The higher speed is re-
flected in the single time step for traveling between main
stations. In particular, Figure 8a shows that in the begin-
ning few time steps, ρI is higher for m = 2 than m = 5
and 10; but after that, ρI becomes lower for m = 2. Fig-
ure 8b indicates that the drop in ρT

I (infected agents on the
railway) is more pronounced as the speed increases, and
thus the portion of infected agents on the railway drops
significantly, when compared with the m = 10 case.

4 A theoretical model

It is possible to capture the key features observed in sim-
ulation results analytically by considering a theoretical
model that ignores the randomness in the local area net-
works. To illustrate the idea, we focus on the SIS model
with a single major railway. Figure 9 shows schematically
the model based on which we develop our analytic ap-
proach. There are again m railway stations, forming a loop
and thus corresponding to the period boundary condition.
For simplicity, each local area network takes on a star-like
network with kloc nodes connecting directly to the rail-
way station. Thus, it only takes one step for travelers to
go from the local nodes to the railway station in the local
area. Every railway station has a degree of (kloc + 2) and
every local area node has a degree of unity. Numerically,
we have checked that this model gives qualitatively the
same behavior as in the railway-local area network model
with a major railway.

To proceed, we treat the two dynamical processes sep-
arately. One process deals with how individual travels. We
aim to getting at the number of travelers at the railway
stations and the number of individuals in the local nodes
in the steady state. With m railway stations, there are a
total of mkloc nodes in all the local area networks. Let NT

Fig. 9. (Color online) Schematic diagram showing star-like
local-area networks connected to major railway stations (black
dots). This model facilitates our analytic approach.

be the number of travelers in the railway stations or on
the train, and N loc be the number of individuals in all
the local nodes. Thus, the number of travelers per railway
station is nT = NT /m, and the number of individuals
per local area node is given by nloc = N loc/mkloc. Note
that N = NT + N loc = mnT + mklocn

loc is a constant.
The quantities nT and nloc are coupled through the

arrival of travelers at local destinations and the probabil-
ity p of starting a new journal. The dynamical equations
of nT and nloc are

dnloc

dt
= −pnloc +

η

kloc
nT ,

dnT

dt
= −ηnT + pklocn

loc, (1)

where η is the probability of an individual arriving at his
destination at a local area node. In the steady state, we
thus have

nT =
pN

m(p + η)
,

nloc =
ηN

mkloc(p + η)
=

η

pkloc
nT . (2)

An estimation of the parameter η can be found as follows.
A person will at most travel m/2 railway stations towards
his destination. The average number of railway stations
for a journey is roughly m/4. Thus, an individual would
have a probability η = 4/m ∼ 1/m (for m � 1) to get off
the railway station. Therefore, a balance between travelers
arriving at their destinations and starting new journeys
maintains a stable nT and nloc.

To couple the travelers’ dynamics with SIS epidemics,
we split nloc and nT into contributions from the sus-
ceptible and infected individuals, i.e. nloc = nloc

S + nloc
I

and nT = nT
S + nT

I with the subscript characterizing the
state. Following the SIS dynamics, we have

dnloc
I

dt
= (1 − p)

[
(1 − μ)nloc

I + βnloc
S nloc

I

]

+
η

kloc

[
(1 − μ)nT

I + βnT
SnT

I

] − n
(loc)
I ,

dnT
I

dt
= pkloc

[
(1 − μ)nloc

I + βnloc
S nloc

I

]

+(1 − η)
[
(1 − μ)nT

I + βnT
S nT

I

] − nT
I . (3)
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The total number of infected individuals is given by NI =
mnT

I + mklocn
loc
I . It follows that

dNI

dt
= mβ

(
klocn

loc
S nloc

I + nT
SnT

I

) − μNI . (4)

In the steady state, NI , nloc
I and nT

I are related through

NI =
mβ

μ

[
kloc

(
nloc − nloc

I

)
nloc

I +
(
nT − nT

I

)
nT

I

]
, (5)

where nT and nloc are given by equation (2). As ρI =
NI/N , it follows that ρI would increase with β/μ, as the
numerical results in Figure 5c show. Note that nloc

I and
nT

I will also depend on β/μ making the dependence of ρI

on β/μ nonlinear.
For different infection probabilities β and β0 in the

railway and local-area networks, equations (3)–(5) can be
modified readily. The term βnloc

S nloc
I in equation (3) be-

comes β0n
loc
S nloc

I , resulting in

NI =
mβ0

μ

(

klocn
loc
S nloc

I +
β

β0
nT

SnT
I

)

. (6)

It follows that NI would increase with β/β0, as observed
in Figure 6a. The result also indicates that the increase is
significant only when there are many people on the rail-
way, i.e. when nT

SnT
I is large. Similarly, one can generalize

to the case of different recovery probabilities.
Equation (4) can be used to explore the transient be-

havior. When the infection begins, we have nloc
I � nloc

S
and nT

I � nT
S . One can then linearize equation (4) to give

dNI

dt
≈ mβ

(
klocn

locnloc
I + nT nT

I

) − μNI

= β
(
N locnloc

I + NT nT
I

) − μNI , (7)

where the terms (nloc
I )2 and (nT

I )2 are ignored.
Since nloc

I = (NI − mnT
I )/mkloc, we have

dNI

dt
= β

(
nlocNI +

(
nT − nloc

)
mnT

I

) − μNI

≈ β
(
nloc(1 − χ) + nT χ

)
NI − μNI , (8)

where χ ≡ NT
I /NI represents the ratio of infected num-

ber in the stations to the total infected number in the
system and 0 < χ < 1. Solving equation (8) for NI(t) and
thus ρI(t) at short times gives

ρI(t) = ρI(0)e[β(nT χ+nloc(1−χ))−μ]t. (9)

This result is consistent with numerical results. The ini-
tial exponential growth shows that the gathering of agents,
including infected ones, at the major railway stations as
given by the factor (nT χ) leads to a faster initial growth
in ρI(t) than in ER network. In contrast, ρI(t) ∼ e(βn−μ)t

in an ER network, where n = N/M is the average number
of persons per node in the absence of the major railway,
shows a slower initial growth. This is consistent with sim-
ulation results shown in Figures 5a and 5b. In addition,

a smaller value of m would lead to a higher nT and thus a
faster initial growth and thus a higher ρI at short times,
as seen in Figure 8a. Equation (9) also shows that gath-
ering of travelers on the railway leads to a smaller infec-
tion threshold, as β/μ > 1/(nT χ + nloc(1 − χ)) = 1/
[(nT − nloc)χ + nloc] would lead to an initial growth
in ρI . In contrast, the corresponding ER network gives
a threshold β/μ > 1/n. Considering that nT is gener-
ally much larger than nloc and nloc ≈ n, we conclude
that 1/[(nT − nloc)χ + nloc] < 1/n, indicating that the
threshold (β/μ)c for the two-layered network will be less
than that of the corresponding ER network. This is con-
sistent with the numerical results in Figure 5c.

5 Summary

In summary, we presented and studied two-layer travel-
ing network models that capture several essential features
of modern high speed train systems and studied a co-
evolving epidemic with individuals traveling on the net-
works. A railway network and the role of a single major
railway were studied in the SIS model. A major railway,
which gathers traveling individuals, would lead to a faster
initial infection and a more severe level of infection in the
steady state, when compared with a random ER network
consisting of all the nodes. Higher speed trains, which stop
at fewer stations each serving a bigger local area, help sup-
press the level of infection. An analytic treatment, based
on a model that emphasizes the role of the major railway,
reveals the key features observed in simulation results. The
results represent a step towards a better design of control
strategies in modern transportation systems. We remark
that we have also carried out similar studies using the SIR
model, where R denotes the recovered persons. The many
effects that we discussed with regard to the SIS model also
apply to the SIR model. We remark that while the present
model and analysis included a number of new features, a
more realistic study incorporating real data on the local
transportation design, multiple major railways, and distri-
bution of population would require much more work than
here.

The present work can be extended to other types of
two-layer transportation networks, including the coupling
of airports, subways, coaches and local buses. It can also
be extended to individuals moving in a multi-layered net-
work. Another key feature into the models is that the
travelers take on the shortest path towards the destina-
tion, instead of the random diffusion processes studied in
previous works. This highly directional or driven process
can be extended to other problems such as heat and mass
transportation in multi-layered networks. These problems
are worthy of further investigations.
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Chinese University of Hong Kong for the hospitality during a
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