Skip to main content
Log in

Structural, electronic and dynamical stability of heavy metal iron pernitride: a spin polarized first-principles study

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

First principles calculations using ab initio density functional theory using the ultrasoft pseudopotential method and generalized gradient approximations (GGA) have been carried out for heavy metal iron-pernitride (FeN2). We have performed both non-spin and spin polarized calculations and found that the spin polarized ground state is energetically more favourable with a magnetic moment of 1.86 μ B. The calculated electronic band structure, density of states and contour plot suggest that natural iron-pernitride is metallic. The high bulk modulus of FeN2 confirms that the FeN2 has lower compressibility and high hardness. The present values of the bulk modulus, N-N bond length, magnetic moment and optimized structure parameters agree with the previous studies. A detailed analysis of the phonon dispersion curves allows us to conclude that the spin polarized phonon dispersion curves contain positive frequencies throughout the Brillouin zone and hence confirms the dynamical stability. The eigen displacements of Raman and infrared active phonon modes at the zone centre for FeN2 are discussed in detail. The total and partial phonon density of states are also reported along with lattice specific heat and Debye temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Opila, S. Levine, J. Lorincz, J. Mater. Sci. 39, 5969 (2004)

    Article  ADS  Google Scholar 

  2. D.Y. Blum, J. Marschall, D. Hui, B. Adair, M. Vestel. 91, 1481 (2008)

    Google Scholar 

  3. E. Gregoryanz, C. Sanloup, M. Somayazulu, J. Badro, G. Fiquet, H. Mao, R.J. Hemley, Nat. Mater. 3, 294 (2004)

    Article  ADS  Google Scholar 

  4. M. Chhowalla, H.E. Unalan, Nat. Mater. 4, 317 (2005)

    Article  ADS  Google Scholar 

  5. A. Zerr, G. Miehe, R. Riedel, Nat. Mater. 2, 185 (2003)

    Article  ADS  Google Scholar 

  6. S. Yamanaka, K. Hotehama, H. Kawaji, Nature 392, 580 (1998)

    Article  ADS  Google Scholar 

  7. P.F. McMillan, Nat. Mater. 1, 19 (2002)

    Article  ADS  Google Scholar 

  8. S.H. Jhi, J. Ihm, S.G. Louie, M.L. Cohen, Nature 399, 132 (1999)

    Article  ADS  Google Scholar 

  9. A. Yıldız, Ü. Akıncı, O. Gülseren, İ. Sökmen, J. Phys.: Condens. Matter 21, 485403 (2009)

    Article  Google Scholar 

  10. C. Jiang, Z. Lin, Y. Zhao, Phys. Rev. Lett. 103, 185501 (2009)

    Article  ADS  Google Scholar 

  11. C. Jiang, Z. Lin, J. Zhang, Y. Zhao, Appl. Phys. Lett. 94, 191906 (2009)

    Article  ADS  Google Scholar 

  12. Y. Liang, J. Zhao, B. Zhang, Solid State Commun. 146, 450 (2008)

    Article  ADS  Google Scholar 

  13. Y. Li, Y. Ma, Solid State Commun. 150, 759 (2010)

    Article  ADS  Google Scholar 

  14. Y. Li, B. Li, T. Cui, Y. Li, L. Zhang, Y. Ma, G. Zou, J. Phys.: Condens. Matter 20, 045211 (2008)

    Article  ADS  Google Scholar 

  15. T. Maruyama, T. Morishita, Appl. Phys. Lett. 69, 890 (1996)

    Article  ADS  Google Scholar 

  16. A. Zerr, G. Miehe, R. Boehler, Nat. Mater. 2, 185 (2003)

    Article  ADS  Google Scholar 

  17. J.C. Crowhurst, A.F. Goncharov, B. Sadigh, C.L. Evans, P.G. Morrall, J.L. Ferreira, A.J. Nelson, Science 311, 1275 (2006)

    Article  ADS  Google Scholar 

  18. A.F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R.J. Hemley, H.K. Mao, Phys. Rev. Lett. 96, 155501 (2006)

    Article  ADS  Google Scholar 

  19. J.C. Crowhurst, A.F. Goncharov, B. Sadigh, J.M. Zaug, D. Aberg, Y. Meng, V.B. Prakapenka, J. Mater. Res. 23, 1 (2008)

    Article  ADS  Google Scholar 

  20. H.R. Soni, S.D. Gupta, S.K. Gupta, P.K. Jha, Physica B 406, 2143 (2011)

    Article  ADS  Google Scholar 

  21. A.L. Ivanovskii, Russ. Chem. Rev. 78, 303 (2009)

    Article  ADS  Google Scholar 

  22. M. Wessel, R. Dronskowski, Chem. Eur. J. 17, 2598 (2011)

    Article  Google Scholar 

  23. B. Eck, R. Dronskowski, M. Takahashi, S. Kikkawa, J. Mater. Chem. 9, 1527 (1999)

    Article  Google Scholar 

  24. M. Wessel, R. Dronskowski, J. Am. Chem. Soc. 132, 2421 (2010)

    Article  Google Scholar 

  25. S. Baroni et al., http://www.pwscf.org/

  26. P. Hohenberg, W. Kohn, Phys. Rev. B. 136, 864 (1964)

    Article  MathSciNet  ADS  Google Scholar 

  27. W. Kohn, L. Sham, J. Phys. Rev. 140, A1133 (1965)

    Article  MathSciNet  ADS  Google Scholar 

  28. D. Vanderbilt, Phys. Rev. B. 41, 7892 (1990)

    Article  ADS  Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3685 (1996)

    Article  Google Scholar 

  30. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  31. M. Methfessel, A. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  32. W. Frank, C. Elsässer, M. Fähnle, Phys. Rev. Lett. 74, 1791 (1995)

    Article  ADS  Google Scholar 

  33. S. Baroni, S. de Gironcoli, A. dal Corso, P. Giannozzi, Rev. Mod. Phys. 73, 515 (2001)

    Article  ADS  Google Scholar 

  34. R.D. King-Smith, R.J. Needs, J. Phys.: Condens. Matter 2, 3431 (1990)

    Article  ADS  Google Scholar 

  35. K. Karch, P. Pavone, W. Windl, O. Schütt, D. Strauch, Phys. Rev. B 50, 17054 (1994)

    Article  ADS  Google Scholar 

  36. O. Schütt, P. Pavone, W. Windl, K. Karch, D. Strauch, Phys. Rev. B 50, 3746 (1994)

    Article  ADS  Google Scholar 

  37. F. Birch, J. Geophys. Res. B 83, 1257 (1978)

    Article  ADS  Google Scholar 

  38. D.L. Rousseau, R.P. Bauman, S.P.S.J. Porto, Raman Spectrosc. 10, 253 (1981)

    Article  ADS  Google Scholar 

  39. H.C. Herper, E. Hoffmann, P. Entel, Phys. Rev. B 60, 3839 (1999)

    Article  ADS  Google Scholar 

  40. P.K. Jha, Phys. Rev. B 72, 214502 (2005)

    Article  ADS  Google Scholar 

  41. P.K. Jha, S.P. Sanyal, Physica C 261, 259 (1996)

    Article  ADS  Google Scholar 

  42. C. Lee, X. Gonze, Phys. Rev. B 51, 8610 (1995)

    Article  ADS  Google Scholar 

  43. D. Åberg, P. Erhart, J. Crowhurst, J.M. Zaug, A.F. Goncharov, B. Sadigh, Phys. Rev. B 82, 104116 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prafulla K. Jha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S.D., Gupta, S.K. & Jha, P.K. Structural, electronic and dynamical stability of heavy metal iron pernitride: a spin polarized first-principles study. Eur. Phys. J. B 86, 8 (2013). https://doi.org/10.1140/epjb/e2012-30114-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-30114-3

Keywords

Navigation