Skip to main content
Log in

Study of pressure induced structural phase transition and elastic properties of lanthanum pnictides

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We evolve an effective interatomic interaction potential with long range Coulomb interactions, Hafemeister and Flygare type short range overlap repulsion extended up to second neighbor ions and van der Waals interaction to discuss the pressure dependent first order phase transition, mechanical, elastic, and thermodynamical properties of NaCl-type (B1) to CsCl-type (B2) structure in lanthanum pnictides (LaY, Y = N, P, As, Sb, and Bi). Both charge transfer interactions and covalency effect apart from long range Coulomb are important in revealing the high-pressure structural phase transition, associated volume collapse, elastic and thermodynamical properties. By analyzing the aggregate elastic constants pressure (temperature) dependence, the rare earth lanthanum pnictides are mechanically stiffened as a consequence of bond compression and bond strengthening attributed to mechanical work hardening, thermally softening arose due to bond expansion and bond weakening due to lattice vibrations, brittle (ductile) nature at zero (increased) pressure and temperature dependent brittleness from room temperature to high temperatures. To our knowledge these are the first quantitative theoretical prediction of the pressure and temperature dependence of elastic and thermodynamical properties explicitly the mechanical stiffening, thermally softening, and brittle (ductile) nature of rare earth LaY (Y = N, P, As, Sb and Bi) pnictides and still awaits experimental confirmations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Adachi, I. Shirotani, J. Hayashi, O. Shimomura, Phys. Lett. A 250, 389 (1998)

    Article  ADS  Google Scholar 

  2. I. Shirotani, K. Yamanashi, J. Hayashi, N. Ishimatsu, O. Shimomura, T. Kckegawa, Solid State Commun. 127, 573 (2003)

    Article  ADS  Google Scholar 

  3. J. Hayashi, T. Toyama, N. Hoshi, I. Shirotani, T. Kikegawa, Photon Factory Activity Rep. 2005 Part B 23, 187 (2006)

    Google Scholar 

  4. J.M. Léger, D. Ravot, J. Rossat-Mignod, J. Phys. C: Solid State. Phys. 17, 4935 (1984)

    Article  ADS  Google Scholar 

  5. G. Vaitheeswaran, V. Kanchana, M. Rajagopalan, J. Alloys. Compd. 46, 336 (2002)

    Google Scholar 

  6. G. Vaitheeswaran, V. Kanchana, M. Rajagopalan, Physica B 64, 315 (2002)

    Google Scholar 

  7. G. Vaitheeswaran, V. Kanchana, M. Rajagopalan, Solid State Commun. 97, 124 (2002)

    Google Scholar 

  8. A. Hasegawa, J. Phys. C: Solid State. Phys. 13, 6147 (1980)

    Article  ADS  Google Scholar 

  9. Z. Charifi, A.H. Reshak, H. Baaziz, Solid State Commun. 148, 139 (2008)

    Article  ADS  Google Scholar 

  10. E. Deligöz, K. Colakoglu, Y.O. Ciftci, H. Ozisik, J. Phys.: Condens. Matter 19, 436204 (2007)

    Article  ADS  Google Scholar 

  11. G. Pagare, S.P. Sanyal, P.K. Jha, J. Alloys Compd. 16, 398 (2005)

    Google Scholar 

  12. G. Gökoglu, A. Erkisi, Solid State Commun. 147, 221 (2008)

    Article  ADS  Google Scholar 

  13. Shouxin Cui, Wenxia Feng, Haiquan Hu, Zhenbao Feng, Hong Liu, Solid State Commun. 149, 996 (2009)

    Article  ADS  Google Scholar 

  14. U. Benedict, S. Dabos-Seignon, J.P. Dancausse, M. Gensini, G. Gering, S. Heathman, H. Luo, J.S. Olsen, L. Gerward, R.G. Haire, J. Alloys Compd. 181, 1 (1992)

    Article  Google Scholar 

  15. H.M. Tutuncu, S. Bagcl, G.P. Srivastava J. Phys.: Condens. Matter 19, 156207 (2007)

    Article  ADS  Google Scholar 

  16. M.E. Mullen, B. Luthi, P.S. Wang, E. Bucher, L.D. Longinotti, J.P. Maita, Phys. Rev. B 10, 186 (1974)

    Article  ADS  Google Scholar 

  17. R.W.G. Wyckoff, in Crystal Structure, 2nd edn. (Wiley, London, 1963), Vol. 1, p. 87

  18. F. Driss Khodja, A. Boudali, K. Amara, B. Amrani, A. Kadoun, B. Abbar, Physica B 403, 4305 (2008)

    Article  ADS  Google Scholar 

  19. R.K. Singh, Phys. Rep. 85, 259 (1982)

    Article  ADS  Google Scholar 

  20. D. Varshney, G. Joshi, M. Varshney, S. Shriya, Solid State Sci. 12, 864 (2010)

    Article  ADS  Google Scholar 

  21. D.W. Hafemeister, W.H. Flygare, J. Chem. Phys. Soc. 43, 795 (1965)

    ADS  Google Scholar 

  22. M.P. Tosi, Solid State Phys. 16, 1 (1964)

    Article  Google Scholar 

  23. M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1956)

  24. J.C. Slater, J.G. Kirkwood, Phys. Rev. 37, 682 (1931)

    Article  ADS  Google Scholar 

  25. J.R. Tessman, A.H. Kahn, Phys. Rev. 92, 890 (1953)

    Article  ADS  Google Scholar 

  26. R.D. Shannon, J. Appl. 73, 348 (1993)

    Article  ADS  Google Scholar 

  27. R.D. Shannon, R.X. Fischer, Phys. Rev. B 73, 235111 (2006)

    Article  ADS  Google Scholar 

  28. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. D. Varshney, P. Sharma, N. Kaurav, S. Shah, R.K. Singh, J. Phys. Soc. Jpn 74, 382 (2005)

    Article  ADS  Google Scholar 

  30. M.R. Vukcevich, Phys. Stat. Sol. B 54, 545 (1972)

    Article  ADS  Google Scholar 

  31. G.R. Barsch, J. Appl. Phys. 39, 3780 (1968)

    Article  ADS  Google Scholar 

  32. R. Hill, Proc. Phys. Soc. A 65, 349 (1952)

    Article  ADS  Google Scholar 

  33. W. Voigt, Lehrbuch der Kristallphysik (Teubner, Leipzig, 1928)

  34. A. Reuss, Z. Angew. Math. Mech. 9, 49 (1929)

    Article  MATH  Google Scholar 

  35. I. R Shein, A.L. Ivanovskii, J. Phys.: Condens. Matter 20, 415218 (2008)

    Article  Google Scholar 

  36. S.F. Pugh, Phil. Mag. 45, 823 (1954)

    Google Scholar 

  37. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta, Elastic Constants and Elastic Moduli of Metals and Insulators Handbook, edited by I.N. Frantsevich (Naukova Dumka, Kiev, 1983), p. 60

  38. G. Vaitheeswaran, V. Kanchana, A. Svane, J. Phys.: Condens. Matter 19, 326214 (2007)

    Article  Google Scholar 

  39. K. Chen, L.R. Zhao, J.S. Tee, J. Appl. Phys. 93, 2414 (2003)

    Article  ADS  Google Scholar 

  40. D. Varshney, G. Joshi, M. Varshney, Swarna Shriya, J. Alloys Compd. 495, 23 (2010)

    Article  Google Scholar 

  41. D. Varshney, G. Joshi, M. Varshney, Mater. Res. Bull. 45, 916 (2010)

    Article  Google Scholar 

  42. D. Varshney, G. Joshi, M. Varshney, S. Shriya, Physica B 405, 1663 (2010)

    Article  ADS  Google Scholar 

  43. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements (McGraw-Hill, New York, 1973)

  44. A. Bouhemadou, R. Khenata, M. Kharoubi, T. Seddik, Ali H. Reshak, Y. Al-Douri, Comput. Mater. Sci. 45, 474 (2009)

    Article  Google Scholar 

  45. A. Maachou, H. Aboura, B. Amrani, R. Khenata, S. Bin Omran, Dinesh Varshney, Comput. Mater. Sci. 50, 3123 (2011)

    Article  Google Scholar 

  46. K. Kim, W.R.L. Lambrecht, B. Segal, Phys. Rev. B 50, 1502 (1994)

    Article  ADS  Google Scholar 

  47. L. Kleinman, Phys. Rev. 128, 2614 (1962)

    Article  ADS  Google Scholar 

  48. W.A. Harrison, Electronic Structure and Properties of Solids (Dover, New York, 1989)

  49. E. Schreiber, O.L. Anderson, N. Soga, Elastic Constants and Their Measurements (McGRaw-Hill, New York, 1973)

  50. M. Blackman, Proc. R. Soc. Lond. A 181, 58 (1942)

    Article  ADS  Google Scholar 

  51. M. Blackman, Proc. R. Soc. Lond. A 159, 416 (1937)

    Article  ADS  MATH  Google Scholar 

  52. M. Blackman, Proc. R. Soc. Lond. A 149, 126 (1935)

    Article  ADS  MATH  Google Scholar 

  53. M. Blackman, Proc. R. Soc. Lond. A 148, 384 (1935)

    Article  ADS  MATH  Google Scholar 

  54. M. Blackman, Proc. R. Soc. Lond. A 148, 365 (1935)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Varshney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D., Shriya, S. & Varshney, M. Study of pressure induced structural phase transition and elastic properties of lanthanum pnictides. Eur. Phys. J. B 85, 241 (2012). https://doi.org/10.1140/epjb/e2012-21054-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-21054-y

Keywords

Navigation