Skip to main content
Log in

Equivalence between non-bilinear spin-S Ising model and Wajnflasz model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose the mapping of polynomial of degree 2S constructed as a linear combination of powers of spin-S (for simplicity, we called as spin-S polynomial) onto spin-crossover state. The spin-S polynomial in general can be projected onto non-symmetric degenerated spin up (high-spin) and spin down (low-spin) momenta. The total number of mapping for each general spin-S is given by 2(22S − 1). As an application of this mapping, we consider a general non-bilinear spin-S Ising model which can be transformed onto spin-crossover described by Wajnflasz model. Using a further transformation we obtain the partition function of the effective spin-1/2 Ising model, making a suitable mapping the non-symmetric contribution leads us to a spin-1/2 Ising model with a fixed external magnetic field, which in general cannot be solved exactly. However, for a particular case of non-bilinear spin-S Ising model could become equivalent to an exactly solvable Ising model. The transformed Ising model exhibits a residual entropy, then it should be understood also as a frustrated spin model, due to competing parameters coupling of the non-bilinear spin-S Ising model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Onsager, Phys. Rev. 65, 117 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. T. Horiguchi, Phys. Lett. A 113, 425 (1986)

    Article  ADS  Google Scholar 

  3. M. Kolesík, L. Samaj, Int. J. Mod. Phys. B 6, 1529 (1992)

    Article  ADS  Google Scholar 

  4. X.D. Mi, Z.R. Yang, J. Phys. A 28, 4883 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  5. X.D. Mi, Z.R. Yang, Phys. Rev. E 49, 3636 (1994)

    Article  ADS  Google Scholar 

  6. K. Tang, J. Phys. A 21, L1097 (1988)

    Article  ADS  Google Scholar 

  7. F.Y. Wu, Phys. Lett. A 117, 365 (1986)

    Article  Google Scholar 

  8. N. Sh. Izmailian, Pis’ma Zh. Éksp. Teor. Fiz. 63, 270 (1996)

    Google Scholar 

  9. N.Sh. Izmailian, N.S. Ananikian, Phys. Rev. B 50, 6829 (1994)

    Article  ADS  Google Scholar 

  10. R.I. Joseph, J. Phys. A 9, L31 (1976)

    Article  ADS  Google Scholar 

  11. R.I. Joseph, Phys. Rev. B 13, 4042 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  12. T. Horiguchi, Physica A 214, 452 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  13. O. Rojas, S.M. de Souza, Phys. Lett. A 373, 1321 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. J.A. Real, A.B. Gaspara, M.C. Muñoz, Dalton Trans. 2062 (2005)

  15. S. Miyashita, Y. Konishi, H. Tokoro, M. Nishino, K. Boukheddaden, F. Varret, Prog. Theor. Phys. 114, 719 (2005)

    Article  ADS  MATH  Google Scholar 

  16. A. Eisinberg, G. Fedele, Appl. Math. Comp. 174, 1384 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. O. Rojas, J.S. Valverde, S.M. de Souza, Physica A 388, 1419 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover publications, Inc., New York, 1968)

  19. J. Wanjflasz, R. Pick, J. Phys. Colloq. France 32, C1 (1971)

    Google Scholar 

  20. F. Varret et al., Pure Appl. Chem. 74, 2159 (2002)

    Article  Google Scholar 

  21. K. Boukheddaden, F. Varret, S. Salunke, J. Linares, E. Codjovi, Phase Transitions 75, 733 (2002)

    Article  Google Scholar 

  22. C. Domb, M.S. Green, Phase Transition and Critical Phenomena (Academic, 1972), Vol. 1

  23. O. Rojas, S.M. de Souza, J. Phys. A Math. Theor. 44, 245001 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rojas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rojas, O., de Souza, S.M. Equivalence between non-bilinear spin-S Ising model and Wajnflasz model. Eur. Phys. J. B 85, 170 (2012). https://doi.org/10.1140/epjb/e2012-20998-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20998-0

Keywords

Navigation