Skip to main content
Log in

Effect of electron-optical phonon interaction on resonant tunneling in coupled quantum wells

The European Physical Journal B Aims and scope Submit manuscript

Abstract

The spatial distribution of the wave functions for electrons in a coupled-quantum-well system of GaAs/Al x Ga1−x As with triple barriers is discussed. Within the framework of the dielectric continuum model, the dispersion relations of interface optical phonon modes are given. Furthermore, the interaction between an electron and optical phonons and the ternary mixed crystal effect in these structures are investigated in detail. The optical phonon-assisted tunneling (PAT) is studied using the Fermi golden rule to obtain numerically the PAT currents. The results reveal that the interface optical phonons are more important than the confined longitudinal optical phonons. Only one PAT peak does appear when the middle barrier is wide enough or its Al component is high enough, and the peak moves to the higher applied voltage direction, whereas two PAT peaks do appear when the middle barrier is narrow enough or its Al component is low enough.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Goser, P. Glosekotter, J. Dienstuhl, Nanoelectronics and Nanosystems: From Transistors to Molecular and Quantum Devices (Springer, Berlin, 2004)

  2. M.V. Petrov, S.R. Parihar, S.A. Lyon, Phys. Rev. B 54, 13868 (1996)

    Article  ADS  Google Scholar 

  3. G.S. Boebinger, A.F.J. Levi, S. Schmitt-Rink, A. Passner, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 65, 235 (1990)

    Article  ADS  Google Scholar 

  4. F. Chevoir, B. Vinter, Appl. Phys. Lett. 55, 1859 (1989)

    Article  ADS  Google Scholar 

  5. R.N. Kini, A.J. Kent, M. Henini, Phys. Rev. B 80, 035335 (2009)

    Article  ADS  Google Scholar 

  6. P. Wojcik, B.J. Spisak, M. Woloszyn, J. Adamowski, Semicond. Sci. Technol. 24, 095012 (2009)

    Article  ADS  Google Scholar 

  7. G. Christmann, C. Coulson, J.J. Baumberg, N.T. Pelekanos, Z. Hatzopoulos, S.I. Tsintzos, P.G. Savvidis, Phys. Rev. B 82, 113308 (2010)

    Article  ADS  Google Scholar 

  8. M.K. Li, T.W. Kang, N.M. Kim, Appl. Phys. Lett. 94, 123505 (2009)

    Article  ADS  Google Scholar 

  9. K. Mukherjee, N.R. Das, J. Appl. Phys. 109, 053708 (2011)

    Article  ADS  Google Scholar 

  10. V.J. Goldman, D.C. Tsui, J.E. Cunningham, Phys. Rev. B 36, 7635 (1987)

    Article  ADS  Google Scholar 

  11. J.J.L. Rascol, K.P. Martin, S. Ben Amor, R.J. Higgins, A. Celeste, J.C. Portal, A. Torabi, H.M. Harris, C.J. Summers, Phys. Rev. B 41, 3733 (1990)

    Article  ADS  Google Scholar 

  12. M.L. Leadbeater, E.S. Alves, L. Eaves, M. Henini, O.H. Hughes, A. Celeste, J.C. Portal, G. Hill, M.A. Pate, Phys. Rev. B 39, 3438 (1989)

    Article  ADS  Google Scholar 

  13. L.D. Macks, S.A. Brown, R.G. Clark, R.P. Starrett, M.A. Reed, M.R. Deshpande, C.J.L. Fernando, W.R. Frensley, Phys. Rev. B 54, 4857 (1996)

    Article  ADS  Google Scholar 

  14. H. Asahi, M. Tewordt, R.T. Syme, M.J. Kelly, V.J. Law, D.R. Mace, J.E.F. Frost, D.A. Ritchie, G.A.C. Jones, M. Pepper, Appl. Phys. Lett. 59, 803 (1991)

    Article  ADS  Google Scholar 

  15. S. Ozaki, J.M. Feng, J.H. Park, S. Osako, H. Kubo, M. Morifuji, N. Mori, C. Hamaguchi, J. Appl. Phys. 83, 962 (1998)

    Article  ADS  Google Scholar 

  16. G. Kim, D.W. Roh, S.W. Paek, Appl. Phys. Lett. 83, 695 (2003)

    Article  ADS  Google Scholar 

  17. S.-T. Yau, H.B. Sun, P.J. Edwards, P. Lynam, Phys. Rev. B 55, 12880 (1997)

    Article  ADS  Google Scholar 

  18. N.S. Wingreen, K.W. Jacobsen, J.W. Wilkins, Phys. Rev. Lett. 61, 1396 (1988)

    Article  ADS  Google Scholar 

  19. W. Cai, T.F. Zheng, P. Hu, B. Yudanin, M. Lax, Phys. Rev. Lett. 63, 418 (1989)

    Article  ADS  Google Scholar 

  20. P.J. Turley, S.W. Teitsworth, Phys. Rev. B 44, 3199 (1991)

    Article  ADS  Google Scholar 

  21. P.J. Turley, S.W. Teitsworth, J. Appl. Phys. 72, 2356 (1992)

    Article  ADS  Google Scholar 

  22. K.W. Kim, A.R. Bhatt, M.A. Stroscio, P.J. Turley, S.W. Teitsworth, J. Appl. Phys. 72, 2282 (1992)

    Article  ADS  Google Scholar 

  23. P. Orellana, F. Claro, E. Anda, S. Makler, Phys. Rev. B 53, 12967 (1996)

    Article  ADS  Google Scholar 

  24. Z.W. Yan, X.X. Liang, S.L. Ban, Phys. Rev. B 64, 125321 (2001)

    Article  ADS  Google Scholar 

  25. S.L. Ban, J.E. Hasbun, X.X. Liang, J. Lumin. 87–89, 369 (2000)

    Article  Google Scholar 

  26. K.W. Kim, M.A. Stroscio, J. Appl. Phys. 68, 6289 (1990)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. L. Ban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, J.G., Ban, S.L. Effect of electron-optical phonon interaction on resonant tunneling in coupled quantum wells. Eur. Phys. J. B 85, 140 (2012). https://doi.org/10.1140/epjb/e2012-20981-9

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20981-9

Keywords

Navigation