Skip to main content
Log in

Equilibration of a cone: KMC simulation results

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the equilibration of an initial surface of conic shape that consists of concentric circular monolayers by Kinetic Monte Carlo (KMC) method. The kinetic processes of attachment and/or detachment of particles to/from steps, diffusion of particles on the surface, along a step or cluster edges are considered. The difference between an up hill and down hill motion of a particle at a step are taken into account through the Ehrlich-Schwoebel (ES) barrier. The height of the cone evolves as h(0) − h(t) ~ t 1/α where h(0) is the initial height of the surface and α is approximately 2. The ES barrier slows down the equilibration of the surface but the time dependence remains as given above. The exponent α depends neither on ES barrier nor on the temperature. The equilibration is found also to be independent of energy barrier to the motion of particles along the step edges. The number of particles in each layer except the top two circular layers is found to decrease as t 0.57.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Villain, Europhys. Lett. 2, 532 (1986)

    ADS  Google Scholar 

  2. M. Uwaha, J. Phys. Soc. Jpn 57, 1681 (1988)

    Article  ADS  Google Scholar 

  3. N. Israeli, D. Kandel, Phys. Rev. B 80, 3300 (1998)

    Article  ADS  Google Scholar 

  4. N. Israeli, D. Kandel, Phys. Rev. B 60, 13707 (1999)

    Article  Google Scholar 

  5. M. Uwaha, K. Watanabe, J. Phys. Soc. Jpn 69, 497 (2000)

    Article  ADS  Google Scholar 

  6. A. Ichimiya, K. Hayashi, E.D. Williams, T.L. Einstein, M. Uwaha, K. Watanabe, Appl. Surf. Sci. 175-176, 33 (2001)

    Article  ADS  Google Scholar 

  7. A. Ichimiya, K. Hayashi, E.D. Williams, T.L. Einstein, Phys. Rev. Lett. 84, 3662 (2000)

    Article  ADS  Google Scholar 

  8. S. Kodambaka, N. Israeli, J. Bareno, W. Swiech, K. Ohmori, I. Petrov, J.E. Greene, Surf. Sci. 560, 53 (2004)

    Article  ADS  Google Scholar 

  9. M. Giesen, G.S. Icking-Konert, H. Ibach, Phys. Rev. Lett. 80, 552 (1998)

    Article  ADS  Google Scholar 

  10. K.A. Fichthorn, W.H. Weinberg, J. Chem. Phys. 95, 1090 (1991)

    Article  ADS  Google Scholar 

  11. G.H. Gilmer, P. Bennema, J. Appl. Phys. 43, 1347 (1972)

    Article  ADS  Google Scholar 

  12. S. Tanaka, N.C. Bartelt, C.C. Umbach, R.M. Tromp, J.M. Blakely, Phys. Rev. Lett. 78, 3342 (1997)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ozdemir.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esen, M., Tüzemen, A.T. & Ozdemir, M. Equilibration of a cone: KMC simulation results. Eur. Phys. J. B 85, 117 (2012). https://doi.org/10.1140/epjb/e2012-20790-2

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20790-2

Keywords

Navigation