Skip to main content

Advertisement

Log in

Derivatives and credit contagion in interconnected networks

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The importance of adequately modeling credit risk has once again been highlighted in the recent financial crisis. Defaults tend to cluster around times of economic stress due to poor macro-economic conditions, but also by directly triggering each other through contagion. Although credit default swaps have radically altered the dynamics of contagion for more than a decade, models quantifying their impact on systemic risk are still missing. Here, we examine contagion through credit default swaps in a stylized economic network of corporates and financial institutions. We analyse such a system using a stochastic setting, which allows us to exploit limit theorems to exactly solve the contagion dynamics for the entire system. Our analysis shows that, by creating additional contagion channels, CDS can actually lead to greater instability of the entire network in times of economic stress. This is particularly pronounced when CDS are used by banks to expand their loan books (arguing that CDS would offload the additional risks from their balance sheets). Thus, even with complete hedging through CDS, a significant loan book expansion can lead to considerably enhanced probabilities for the occurrence of very large losses and very high default rates in the system. Our approach adds a new dimension to research on credit contagion, and could feed into a rational underpinning of an improved regulatory framework for credit derivatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.G. Haldane, Rethinking the Financial Network (2009), www.bankofengland.co.uk/publications/speeches/2009/speech386.pdf

  2. A. Turner, A. Haldane, P. Woolley, S. Wadhwani, A. Smithers, A. Large, J. Kay, M. Wolf. The Future of Finance, The LSE Report, LSE, 2010

  3. ECB, Credit Default Swaps and Counterparty Risk (2009), http://www.ecb.int/pub/pdf/other/creditdefaultswapsandcounterpartyrisk2009en.pdf

  4. A.G. Haldane, R.M. May, Nature 469, 351 (2011)

    Article  ADS  Google Scholar 

  5. D. Lando, Review of Derivatives Research 2, 99 (1998)

    Google Scholar 

  6. D. Duffie, K. Singleton, Rev. Financ. Stud. 12, 197 (1999)

    Article  Google Scholar 

  7. M. Davis, V. Lo, Quant. Financ. 1, 111 (1999)

    Google Scholar 

  8. R. Jarrow, S. Turnbull, J. Financ. 56, 1765 (2001)

    Article  Google Scholar 

  9. D. Li, J. Fixed Inc. 9, 43 (2001)

    Article  MATH  Google Scholar 

  10. R. Frey, J. Backhaus, Interacting Defaults and Counterparty Risk: a Markovian Approach, Working Paper, University of Leipzig, 2003

  11. E. Rogge, P.J. Schönbucher, Modelling Dynamic Portfolio Credit Risk, Working Paper, Imperial College, London, ABN Amro Bank, London, and ETH, Zürich, 2003

  12. K. Giesecke, S. Weber, J. Bank. Financ. 28, 3009 (2004)

    Article  Google Scholar 

  13. P. Neu, R. Kühn, Physica A 342, 639 (2004)

    Article  ADS  Google Scholar 

  14. J.P.L. Hatchett, R. Kühn, J. Phys. A 39, 2231 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. D. Egloff, M. Leippold, P. Vannini, J. Bank. Financ. 31, 2475 (2007)

    Article  Google Scholar 

  16. J.P.L. Hatchett, R. Kühn, Quant. Financ. 9, 373 (2009)

    Article  Google Scholar 

  17. S. Keenan, Historical Default Rates of Corporate Bond Issuers, 1920-1999 (Moody’s Investor Services, 2000)

  18. S.R. Das, D. Duffie, N. Kapdia, L. Saita, J. Financ. 62, 93 (2007)

    Article  Google Scholar 

  19. D. Duffie, A. Eckner, G. Horel, L. Saita, J. Financ. 64, 2089 (2009)

    Article  Google Scholar 

  20. S. Azizpour, K. Giesecke, G. Schwenkler, Exploring the Sources of Default Clustering, 2011, http://www.stanford.edu/dept/MSandE/cgi-bin/people/faculty/giesecke/pdfs/exploring.pdf

  21. J. Hull, A. White, J. Derivatives 8, 29 (2000)

    Article  Google Scholar 

  22. J. Hull, A. White, J. Derivatives 8, 12 (2001)

    Article  Google Scholar 

  23. H. Haworth, C. Reisinger, J. Cred. Risk 3, 31 (2007)

    Google Scholar 

  24. H. Haworth, C. Reisinger, W. Shaw, Quant. Financ. 8, 669 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Errais, K. Giesecke, L. Goldberg, SIAM Journal on Financial Mathematics 1, 642 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. R. Frey, J. Backhaus, Int. J. Theor. Appl. Financ. 11, 611 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. D. Brigo, K. Chourdakis, Int. J. Theor. Appl. Financ. 12, 1007 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  28. R. Frey, J. Backhaus, J. Econ. Dyn. Contr. 34, 710 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. A. Cousin, M. Jeanblanc, J.-P. Laurent, Hedging CDO Tranches in a Markovian Environment, in Paris-Princeton Lectures on Mathematical Finance 2010, edited by R.A. Carmona, E. Cinlar, I. Ekeland, E. Jouini (Springer, Berlin, Heidelberg, 2011), pp. 1–62

  30. P. Jorion, G. Zhang, J. Financ. Econ. 84, 860 (2007)

    Article  Google Scholar 

  31. S. Markose, S. Giansante, M. Gatkowski, A.R. Shaghaghi, Too Interconnected To Fail: Financial Contagion and Systemic Risk In Network Model of CDS and Other Credit Enhancement Obligations of US Banks, Presentation given at the ECB Workshop on Recent Advances in Modelling Systemic Risk Using network, October 2009, COMISEF Working Papers Series WPS-033 21/04/2010, 2010

  32. H. Elsinger, A. Lehar, M. Summer, Manage. Sci. 52, 1301 (2006)

    Article  MATH  Google Scholar 

  33. F. Schweitzer, G. Fagiolo, D. Sornette, F. Vega-Redondo, A. Vespignani, D.R. White, Science 325, 422 (2009)

    MathSciNet  ADS  MATH  Google Scholar 

  34. R. Cont, E. Bastos e Santos, A. Moussa, Network Structure and Systemic Risk in Banking Systems, working paper, SSRN-1733528, 2009

  35. P. Gai an S. Kapadia, Proc. R. Soc. A 466, 2401 (2010)

    Article  ADS  Google Scholar 

  36. H. Amini, R. Cont, A. Minca, Int. J. Theor. Appl. Financ. 15, 125006 (2012)

    Article  Google Scholar 

  37. F. Caccioli, P. Vivo, M. Marsili, Eur. Phys. J. B 71, 467 (2009)

    Article  ADS  MATH  Google Scholar 

  38. ISDA, ISDA Market Survey Annual Data (2010), http://www2.isda.org/functional-areas/research/surveys/market-surveys/

  39. B. Derrida, E. Gardner, A. Zippelius, Europhys. Lett. 4, 167 (1987)

    Article  ADS  Google Scholar 

  40. C. De Dominicis, Phys. Rev. B 18, 4913 (1978)

    Article  ADS  Google Scholar 

  41. B. Bollobàs, Random Graphs (Cambridge University Press, Cambridge, 2001)

  42. Basel Committee on Banking Supervision, International Convergence of Capital Measurement and Capital Standards: A Revised Framework. Credit Risk – The Internal Ratings Based Approach (2005), Part 2, Sect. III, www.bis.org

  43. R.M. May, Nature 238, 413 (1972)

    Article  ADS  Google Scholar 

  44. J.P.L. Hatchett, B. Wemmenhove, I. Pérez Castillo, T. Nikoletopoulos, N.S. Skantzos, A.C.C. Coolen, J. Phys. A 37, 6201 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Heise.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heise, S., Kühn, R. Derivatives and credit contagion in interconnected networks. Eur. Phys. J. B 85, 115 (2012). https://doi.org/10.1140/epjb/e2012-20740-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20740-0

Keywords

Navigation