Skip to main content
Log in

Time and energy dependent dynamics of the STM tip — graphene system

The European Physical Journal B Aims and scope Submit manuscript

Abstract

Probability current and probability density of wave packets was calculated by solving the three dimensional time-dependent Schrödinger equation for a local potential model of the scanning tunneling microscope (STM) tip — graphene system. Geometrical and electronic structure effects of the three dimensional tunneling process are identified by studying three models of increasing complexity: a jellium half space, a narrow jellium sheet, and a local one electron pseudopotential. It was found that some of the key characteristics of the STM tip — graphene tunneling process are already present at the simple jellium models. In the STM tip — jellium half space system the direction of the momentum does not change during the tunneling event, hence this setup is characterised by introducing an effective distance. For the STM tip — narrow jellium sheet system the direction of the momentum is changed from vertical to horizontal during the tunneling event. The wave packet preferentially tunnels into the bound state of the jellium sheet. For the atomistic model of the graphene sheet an anisotropic spreading of the wave packet was found for hot electrons. This may open new opportunities to build carbon based nanoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005)

    Article  ADS  Google Scholar 

  3. Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)

    Article  ADS  Google Scholar 

  4. M.I. Katsnelson, K.S. Novoselov, A.K. Gleim, Nature Physics 2, 620 (2006)

    Article  ADS  Google Scholar 

  5. M.I. Katsnelson, Eur. Phys. J. B 51, 157 (2006)

    Article  ADS  Google Scholar 

  6. B.M. Garraway, K.-A. Suominen, Rep. Prog. Phys. 58, 365 (1995)

    Article  ADS  Google Scholar 

  7. T.M. Rusin, W. Zawadzki, Phys. Rev. B 76, 195439 (2007)

    Article  ADS  Google Scholar 

  8. G.M. Maksimova, V.Ya. Demikhovskii, E.V. Frolova, Phys. Rev. B 78, 235321 (2008)

    Article  ADS  Google Scholar 

  9. V. Krueckl, T. Kramer, New J. Phys. 11, 093010 (2009)

    Article  ADS  Google Scholar 

  10. E. Romera, F. de los Santos, Phys. Rev. B 80, 165416 (2009)

    Article  ADS  Google Scholar 

  11. G.I. Márk, L.P. Biró, J. Gyulai, Phys. Rev. B 58, 12645 (1998)

    Article  ADS  Google Scholar 

  12. G.I. Márk, L.P. Biró, J. Gyulai, P.A. Thiry, A.A. Lucas, Ph. Lambin, Phys. Rev. B 62, 2797 (2000)

    Article  ADS  Google Scholar 

  13. G.I. Márk, L.P. Biró, Ph. Lambin, Phys. Rev. B 70, 115423 (2004)

    Article  ADS  Google Scholar 

  14. A. Mayer, Carbon 42, 2057 (2004)

    Article  Google Scholar 

  15. J.A. Fleck, J.R. Morris, M.D. Feit, Appl. Phys. 10, 129 (1976)

    Article  ADS  Google Scholar 

  16. M.D. Feit, J.A. Fleck, A. Steiger, J. Comput. Phys. 47, 412 (1982)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. S.A. Chin, S. Janecek, E. Krotscheck, Comput. Phys. Commun. 180, 1700 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  18. B. Poirier, T. Carrington Jr., J. Chem. Phys. 118, 17 (2003)

    Article  ADS  Google Scholar 

  19. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 61, 2981 (2000)

    Article  ADS  Google Scholar 

  20. L. Tapasztó, G. Dobrik, Ph. Lambin, L.P. Biró, Nature Nanotechnol. 3, 397 (2008)

    Article  Google Scholar 

  21. P. Nemes-Incze, G. Magda, K. Kamarás, L.P. Biró, Nano Res. 3, 110 (2010)

    Article  Google Scholar 

  22. Zh. Wang, F. Liu, ACS Nano 4, 2459 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Vancsó.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vancsó, P., Márk, G.I., Lambin, P. et al. Time and energy dependent dynamics of the STM tip — graphene system. Eur. Phys. J. B 85, 142 (2012). https://doi.org/10.1140/epjb/e2012-20458-y

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2012-20458-y

Keywords

Navigation