Skip to main content
Log in

Role of fractal dimension in random walks on scale-free networks

  • Regular Article
  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Fractal dimension is central to understanding dynamical processes occurring on networks; however, the relation between fractal dimension and random walks on fractal scale-free networks has been rarely addressed, despite the fact that such networks are ubiquitous in real-life world. In this paper, we study the trapping problem on two families of networks. The first is deterministic, often called (x,y)-flowers; the other is random, which is a combination of (1,3)-flower and (2,4)-flower and thus called hybrid networks. The two network families display rich behavior as observed in various real systems, as well as some unique topological properties not shared by other networks. We derive analytically the average trapping time for random walks on both the (x,y)-flowers and the hybrid networks with an immobile trap positioned at an initial node, i.e., a hub node with the highest degree in the networks. Based on these analytical formulae, we show how the average trapping time scales with the network size. Comparing the obtained results, we further uncover that fractal dimension plays a decisive role in the behavior of average trapping time on fractal scale-free networks, i.e., the average trapping time decreases with an increasing fractal dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  MATH  ADS  Google Scholar 

  2. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  4. S. Havlin, D. Ben-Avraham, Adv. Phys. 36, 695 (1987)

    Article  ADS  Google Scholar 

  5. R. Metzler, J. Klafter, Phys. Rep. 339, 1 (2000)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. R. Metzler, J. Klafter, J. Phys. A 37, R161 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  7. R Burioni, D. Cassi, J. Phys. A 38, R45 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  8. O. Bénichou, C. Loverdo, M. Moreau, R. Voituriez, Rev. Mod. Phys. 83, 81 (2011)

    Article  ADS  Google Scholar 

  9. F. Spitzer, Principles of Random Walk (Van Nostrand, Princeton, New Jersey, 1964)

  10. G.H. Weiss, Aspects and Applications of the Random Walk (North Holland, Amsterdam, 1994)

  11. B.D. Hughes, Random Walks and Random Environments: Random Walks (Clarendon Press, Oxford, 1996), Vol. 1

  12. S. Redner, A Guide to First-Passage Processes (Cambridge University Press, Cambridge, 2001)

  13. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004)

    Article  ADS  Google Scholar 

  14. E.M. Bollt, D. Ben-Avraham, New J. Phys. 7, 26 (2005)

    Article  Google Scholar 

  15. S. Condamin, O. Bénichou, V. Tejedor, R. Voituriez, J. Klafter, Nature (London) 450, 77 (2007)

    Article  ADS  Google Scholar 

  16. O. Bénichou, B. Meyer, V. Tejedor, R. Voituriez, Phys. Rev. Lett. 101, 130601 (2008)

    Article  Google Scholar 

  17. E.W. Montroll, J. Math. Phys. 10, 753 (1969)

    Article  ADS  Google Scholar 

  18. J.J. Kozak, V. Balakrishnan, Phys. Rev. E 65, 021105 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  19. J.J. Kozak, V. Balakrishnan, Int. J. Bifurc. Chaos Appl. Sci. Eng. 12, 2379 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. E. Agliari, Phys. Rev. E 77, 011128 (2008)

    Article  ADS  Google Scholar 

  21. A. Garcia Cantú, E. Abad, Phys. Rev. E 77, 031121 (2008)

    Article  ADS  Google Scholar 

  22. C.P. Haynes, A.P. Roberts, Phys. Rev. E 78, 041111 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  23. J.L. Bentz, J.W. Turner, J.J. Kozak, Phys. Rev. E 82, 011137 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  24. V. Tejedor, O. Bénichou, R. Voituriez, Phys. Rev. E 83, 066102 (2011)

    Article  ADS  Google Scholar 

  25. A.-L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  26. A. Kittas, S. Carmi, S. Havlin, P. Argyrakis, Europhys. Lett. 84, 40008 (2008)

    Article  ADS  Google Scholar 

  27. Z.Z. Zhang, Y. Qi, S.G. Zhou, W.L. Xie, J.H. Guan, Phys. Rev. E 79, 021127 (2009)

    Article  ADS  Google Scholar 

  28. Z.Z. Zhang, J.H. Guan, W.L. Xie, Y. Qi, S.G. Zhou, Europhys. Lett. 86, 10006 (2009)

    Article  ADS  Google Scholar 

  29. Z.Z. Zhang, S.G. Zhou, W.L. Xie, L.C. Chen, Y. Lin, J.H. Guan, Phys. Rev. E 79, 061113 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  30. E. Agliari, R. Burioni, Phys. Rev. E 80, 031125 (2009)

    Article  ADS  Google Scholar 

  31. V. Tejedor, O. Bénichou, R. Voituriez, Phys. Rev. E 80, 065104(R) (2009)

    Article  ADS  Google Scholar 

  32. Z.Z. Zhang, S.Y. Gao, W.L. Xie, Chaos 20, 043112 (2010)

    Article  ADS  Google Scholar 

  33. E. Agliari, R. Burioni, A. Manzotti, Phys. Rev. E 82, 011118 (2010)

    Article  ADS  Google Scholar 

  34. C. Song, S. Havlin, H.A. Makse, Nature 433, 392 (2005)

    Article  ADS  Google Scholar 

  35. C. Song, S. Havlin, H.A. Makse, Nature Physics 2, 275 (2006)

    Article  ADS  Google Scholar 

  36. Z.Z. Zhang, W.L. Xie, S.G. Zhou, S.Y. Gao, J.H. Guan, Europhys. Lett. 88, 10001 (2009)

    Article  ADS  Google Scholar 

  37. Z.Z. Zhang, Y. Lin, Y.J. Ma, J. Phys. A 44, 075102 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  38. H.D. Rozenfeld, S. Havlin, D. Ben-Avraham, New J. Phys. 9, 175 (2007)

    Article  ADS  Google Scholar 

  39. H.D. Rozenfeld, D. Ben-Avraham, Phys. Rev. E 75, 061102 (2007)

    Article  ADS  Google Scholar 

  40. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 65, 066122 (2002)

    Article  ADS  Google Scholar 

  41. Z.Z. Zhang, S.G. Zhou, L.C. Chen, Eur. Phys. J. B 58, 337 (2007)

    Article  ADS  Google Scholar 

  42. A.N. Berker, S. Ostlund, J. Phys. C 12, 4961 (1979)

    Article  ADS  Google Scholar 

  43. M. Kaufman, R.B. Griffiths, Phys. Rev. B 24, 496 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  44. R.B. Griffiths, M. Kaufman, Phys. Rev. B 26, 5022 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  45. M. Hinczewski, A.N. Berker, Phys. Rev. E 73, 066126 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  46. Z.Z. Zhang, S.G. Zhou, T. Zou, L.C. Chen, J.H. Guan, Phys. Rev. E 79, 031110 (2009)

    Article  ADS  Google Scholar 

  47. D.J. Watts, H. Strogatz, Nature (London) 393, 440 (1998)

    Article  ADS  Google Scholar 

  48. Z.Z. Zhang, W.L. Xie, S.G. Zhou, M. Li, J.H. Guan, Phys. Rev. E 80, 061111 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongzhi Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, Z., Yang, Y. & Gao, S. Role of fractal dimension in random walks on scale-free networks. Eur. Phys. J. B 84, 331–338 (2011). https://doi.org/10.1140/epjb/e2011-20564-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20564-4

Keywords

Navigation