Skip to main content

Advertisement

Log in

Radiative entropy balance and vertical stability of a gray atmosphere

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Radiative entropy production and entropy flux are subject to ongoing controversial discussion in the scientific literature. The entropy export of planets such as Earth enables and limits all processes of self-organisation in the atmosphere, hydrosphere and biosphere, and is of fundamental importance for climate studies in the context of the so-called greenhouse effect. In this paper, as tutorial examples, formulas for the entropy balance are derived for two simplified gray atmosphere models, each in radiation balance with a black planetary surface of given temperature and with the cold cosmic background. It is shown that the atmospheric entropy production increases strongly with the absorptivity of the atmosphere, while the stationary surface air temperature is always very close to that of the black surface underneath, even though sensible heat flow is intentionally omitted from the models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N.M. Svatkov, Osnovy planetarnoy geograficheskoy prognozy, Fundamentals of the planetary geographic prognosis (Mysl, Moscow, 1974)

  2. M.I. Budyko, Teplovy balans Zemli, Heat balance of the Earth (Gidrometeoizdat, Leningrad, 1978)

  3. W. Ebeling, R. Feistel, Physik der Selbstorganisation und Evolution (Akademie-Verlag Berlin, 1982)

  4. H.G. Fortak, in Developments in atmospheric science, Man’s impact on climate, edited by W. Bach, J. Pankrath, W. Kellogg (Elsevier Sci., New York, 1979), Vol. 10, p. 1

  5. J.P. Peixoto, A.H. Oort, Physics of Climate (American Institute of Physics, New York, 1992)

  6. G.L. Stephens, D.M. O’Brien, Quart. J. Roy. Meteor. Soc. 119, 121 (1993)

    Article  ADS  Google Scholar 

  7. J. Pelkowski, Meteor. Atm. Phys. 53, 1 (1994)

    Article  Google Scholar 

  8. J. Pelkowski, Entropieerzeugung eines strahlenden Planeten: Studien zu ihrer Rolle in der Klimatheorie (Verlag Harry Deutsch, Thun, Frankfurt am Main, 1995)

  9. H. Ozawa, A. Ohmura, R.D. Lorenz, T. Pujol, Rev. Geophys. 41, 1018 (2003)

    Article  ADS  Google Scholar 

  10. W. Ebeling, R. Feistel, Chaos und Kosmos: Prinzipien der Evolution (Spektrum Akademischer Verlag, Heidelberg-Berlin-Oxford, 1994)

  11. R. Feistel, W. Ebeling, Evolution of Complex Systems: Selforganisation, Entropy and Development (Deutscher Verlag der Wissenschaften, Berlin, Kluwer Academic Publishers, Dordrecht, Boston, London, 1989)

  12. R. Feistel, W. Ebeling, Physics of Self-Organization and Evolution (Wiley-VCH, Weinheim, 2011) in press

  13. C. Essex, Planet. Space Sci. 32, 1035 (1984)

    Article  ADS  Google Scholar 

  14. S. Kabelac, Thermodynamik der Strahlung (Vieweg Braunschweig, Wiesbaden, 1994)

  15. S.E. Wright, D.S. Scott, J.B. Haddow, M.A. Rosen, Int. J. Eng. Sci. 39, 1691 (2001)

    Article  MATH  Google Scholar 

  16. S. Wright, Int. J. Thermophys. 10, 27 (2007)

    Google Scholar 

  17. E. Zeidler, Quantum Field Theory II: Quantum Electrodynamics (Springer, Berlin, Heidelberg, 2009)

  18. Z. Chen, S. Mo, P. Hu, S. Jiang, G. Wang, X. Cheng, Front. Energy Power Eng. China 4, 301 (2010)

    Article  Google Scholar 

  19. R. Feistel, J. Non-Equilib. Thermodyn. (2011), in press Doi:10.1515/JNETDY.2011.009

  20. Y. Yan, Z. Gan, Y. Qi, Geophys. Res. Lett. 31, L14311 (2004)

    Article  ADS  Google Scholar 

  21. R. Feistel, S. Feistel, in Physik Irreversibler Prozesse und Selbstorganisation, edited by L. Schimansky-Geier, H. Malchow, T. Pöschel (Logos-Verlag, Berlin, 2006), p. 81

  22. R. Emden, Sitzungsber. Akad. Wiss. München 1, 55 (1913)

    Google Scholar 

  23. G.W. Petty, A First Course in Atmospheric Radiation (Sundog Publishing, Madison, Wisconsin, 2006)

  24. H. Bovensmann, A. Doicu, P. Stammes, M. Van Roozendael, C. von Savigny, M.P. de Vries, S. Beirle, T. Wanger, K. Chance, M. Buchwitz, A. Kokhanovsky, A. Richter, A.V. Rozanov, V.V. Rozanov, in SCIAMACHY – Exploring the Changing Earth’s Atmosphere, edited by M. Gottwald, H. Bovensmann (Springer, 2011), p. 99, doi:10.1007/978-90-481-9896-2

  25. L.D. Landau, E.M. Lifschitz, Hydrodynamik (Akademie-Verlag, Berlin, 1974)

  26. A.E. Gill, Atmosphere Ocean Dynamics (Academic Press, San Diego, 1982)

  27. R. Feistel, E. Hagen, in The Oceans: Physical-Chemical Dynamics and Human Impact, edited by S.K. Majumdar, E.W. Miller, G.S. Forbes, R.F. Schmalz, A.A. Panah (The Pennsylvania Academy of Science, Easton, 1994), p. 1

  28. IOC, SCOR, IAPSO, The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties, Intergovernmental Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English) (Paris, 2010), http://www.TEOS-10.org

  29. R. Feistel, D.G. Wright, D.R. Jackett, K. Miyagawa, J.H. Reissmann, W. Wagner, U. Overhoff, C. Guder, A. Feistel, G.M. Marion, Ocean Sci. 6, 633 (2010), http://www.ocean-sci.net/6/633/2010/

    Article  URL  ADS  Google Scholar 

  30. R. Feistel, D.G. Wright, H.-J. Kretzschmar, E. Hagen, S. Herrmann, R. Span, Ocean Sci. 6, 91 (2010), http://www.ocean-sci.net/6/91/2010/

    Article  URL  ADS  Google Scholar 

  31. K.A. Emanuel, Atmospheric convection (University Press, New York, Oxford, 1994)

  32. M.Z. Jacobson, Fundamentals of atmospheric modeling (Cambridge University Press, Cambridge, 2005)

  33. T.J. McDougall, R. Feistel, Deep-Sea Res. I 50, 1523 (2003)

    Article  Google Scholar 

  34. G. Kluge, G. Neugebauer, Grundlagen der Thermodynamik (VEB Deutscher Verlag der Wissenschaften, Berlin, 1976)

  35. W.J. Emery, L.D. Talley, G.L. Pickard, Descriptive Physical Oceanography (Elsevier, Amsterdam, 2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Feistel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feistel, R. Radiative entropy balance and vertical stability of a gray atmosphere. Eur. Phys. J. B 82, 197–206 (2011). https://doi.org/10.1140/epjb/e2011-20328-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20328-2

Keywords

Navigation