Skip to main content
Log in

Biexcitonic absorption in a disk-shaped GaN quantum dot

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The present work investigates the nonlinear optical properties of a GaN quantum dot in the disk limit via the exciton and biexciton states using the compact density matrix formalism. Based on this model, we calculate the ground state energy of the exciton and biexciton states by the variation method, within envelope function and effective mass approximations. Linear and nonlinear optical absorption (α (1), α (3)) and oscillator strengths attributed to the optical transitions are obtained. The details of the behaviour of α (1) and α (3) around the resonance frequencies and for different quantum dot geometries are presented. It is found that the size of quantum dot and the optical intensity have a remarkable effect on the optical absorption, and the biexcitonic two-photon absorption coefficient(K 2) has also been calculated in this system. The results show that this parameter is strongly affected by the size of the quantum dot.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Oto, R. Banal, K. Kataoka, M. Funato, Y. Kawakami, Nature Photonics 3, 163 (2010)

    Google Scholar 

  2. J. Jonathan, J. Wierer, D. Aurelien, M.M. Megens, Nature Photonics 3, 163 (2009)

    Article  Google Scholar 

  3. H. Matsubara, S. Yoshimoto, H. Saito, Y. Jianglin, S. Noda, Science 319, 445 (2008)

    Article  ADS  Google Scholar 

  4. A. Asgari, S. Razi, Optic Express 18, 14604 (2010)

    Article  ADS  Google Scholar 

  5. P. Bhattacharya, M. Zhang, J. Hinckley, Appl. Phys. Lett. 97, 251107 (2010)

    Article  ADS  Google Scholar 

  6. B. Damilano, N. Grandjean, F. Semond, J. Massies, M. Leroux, Appl. Phys. Lett. 75, 962 (1999)

    Article  ADS  Google Scholar 

  7. A. Vardi, N. Akopian, G. Bahir, L. Doyennette, M. Tchernycheva, L. Nevou, F.H. Julien, F. Guillot, E. Monroy, Appl. Phys. Lett 88, 143101 (2006)

    Article  ADS  Google Scholar 

  8. M. Tchernycheva, L. Nevou, L. Doyennette, A. Helman, R. Colombelli, F. Julien, F. Guillot, E. Monroy, T. Shibata, M. Tanaka, Appl. Phys. Lett. 87, 101912 (2005)

    Article  ADS  Google Scholar 

  9. F. Rol, S. Founta, H. Mariette, B. Daudin, L. Dang, J. Bleuse, D. Peyrade, J. Gerard, B. Gayral, Phys. Rev. B 75, 125306 (2007)

    Article  ADS  Google Scholar 

  10. R. Bardoux, T. Guillet, P. Lefebvre, T. Taliercio, T. Bretagnon, S. Rousset, B. Gil, F. Semnd, Phys. Rev. B 74, 195319 (2006)

    Article  ADS  Google Scholar 

  11. A. Tambolli, E.D. Haberer, R. Sharma, K.H. Lee, S. Nakamura, L.H. Evelyn, Nature photonics 1, 61 (2007)

    Article  ADS  Google Scholar 

  12. S. Kako, C. Santori, K. Hoshino, S. Gotzinger, Y. Yamamoto, Y. Arakawa, Nature Mater. 5, 887 (2006)

    Article  ADS  Google Scholar 

  13. F. Troiani, U. Hohenester, E. Molinari, Phys. Rev. B 62, R2263 (2000)

    Article  ADS  Google Scholar 

  14. E. Biolatti, R.C. Iotti, P. Zanardi, F. Rossi, Phys. Rev. Lett 85, 5647 (2000)

    Article  ADS  Google Scholar 

  15. S.D. Rinaldis, I. D'Amico, E. Biolatti, R. Rinaldi, R. Cingolani, F. Rossi, Phys. Rev. B 65, 081309 (2002)

    Article  ADS  Google Scholar 

  16. S.D. Rinaldis, I.D. Amico, F. Rossi, Phys. Rev. B 69, 235316 (2004)

    Article  ADS  Google Scholar 

  17. D. Simeonov, A. Dussaigne, R. Butte, N. Grandjean, Phys. Rev. B 77, 075306 (2008)

    Article  ADS  Google Scholar 

  18. A. Khan, K. Balakrishnan, T. Katona, Nature Photonics 2, 77 (2008)

    Article  ADS  Google Scholar 

  19. D. Hofstetter, E. Baumann, F.R. Giorgetta, M. Graf, M. Maier, F. Guillot, E.B. Amarlic, E. Monroy, Appl. Phys. Lett. 88, 121112 (2006)

    Article  ADS  Google Scholar 

  20. S. Petit, D. Guennani, P. Gilliot, C. Hirlimann, B. Honelarge, O. Briot, R.L. Aulombard, Mater. Sci. Eng. 43, 196 (1997)

    Article  Google Scholar 

  21. S. Shojaei, A. Asgari, M. Kalafi, Eur. Phys. J. B 72, 211 (2009)

    Article  ADS  Google Scholar 

  22. S. Shojaei, F. Troiani, A. Asgari, M. Kalafi, G. Goldoni, Eur. Phys. J. B 65, 505 (2008)

    Article  ADS  Google Scholar 

  23. L. Banyai, Y.Z. Hu, M. Lindberg, S.W. Koch, Phys. Rev. B 38, 8142 (1988)

    Article  ADS  Google Scholar 

  24. S.V. Nair, T. Takagahara, Phys. Rev. B 55, 5153 (1996)

    Article  ADS  Google Scholar 

  25. T. Takagahara, Phys. Rev. B 36, 9293 (1987)

    Article  ADS  Google Scholar 

  26. R.W. Boyd, Nonlinear Optics 3th edn. (Academic Press, Inc, New York, 2008)

  27. D. Ahen, S.L. Chuang, IEEE J. Quantum Electron. 23, 2196 (1987)

    Article  ADS  Google Scholar 

  28. C.K. Sun, J.C. Liang, J.C. Wang, F.J. Kao, S. Keller, M.P. Mack, U. Mishra, S.P. Denbaars, Appl. Phys. Lett. 76, 439 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shojaei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shojaei, S. Biexcitonic absorption in a disk-shaped GaN quantum dot. Eur. Phys. J. B 83, 197 (2011). https://doi.org/10.1140/epjb/e2011-20205-0

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-20205-0

Keywords

Navigation