Skip to main content
Log in

Controllable coupling and quantum correlation dynamics of two double quantum dots coupled via a transmission line resonator

  • Regular Article
  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We propose a theoretical scheme to generate a controllable and switchable coupling between two double-quantum-dot (DQD) spin qubits by using a transmission line resonator (TLR) as a bus system. We study dynamical behaviors of quantum correlations described by entanglement correlation (EC) and discord correlation (DC) between two DQD spin qubits when the two spin qubits and the TLR are initially prepared in X-type quantum states and a coherent state, respectively. We demonstrate that in the EC death regions there exist DC stationary states in which the stable DC amplification or degradation can be generated during the dynamical evolution. It is shown that these DC stationary states can be controlled by initial-state parameters, the coupling, and detuning between qubits and the TLR. We reveal the full synchronization and anti-synchronization phenomena in the EC and DC time evolution, and show that the EC and DC synchronization and anti-synchronization depends on the initial-state parameters of the two DQD spin qubits. It is shown that the initial quantum correlation may be suppressed completely when the evolution time approaches to the infinity in the presence of dissipation. These results shed new light on dynamics of quantum correlations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Amico, R. Fazio, A. Osterloh, V. Vedral, Rev. Mod. Phys. 80, 517 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. H. Ollivier, W.H. Zurek, Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  4. B. Schumacher, M.D. Westmoreland, Phys. Rev. A 74, 042305 (2006)

    Article  ADS  Google Scholar 

  5. B. Groisman, S. Popescu, A. Winter, Phys. Rev. A 72, 032317 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  6. L. Henderson, V. Vedral, J. Phys. A Math. Theor. 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. V. Vedral, Phys. Rev. Lett. 90, 050401 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  8. J. Oppenheim, M. Horodecki, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 89, 180402 (2002)

    Article  ADS  Google Scholar 

  9. D. Yang, M. Horodecki, Z.D. Wang, Phys. Rev. Lett. 101, 140501 (2008)

    Article  ADS  Google Scholar 

  10. D.L. Zhou, Phys. Rev. Lett. 101, 180505 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  11. D. Kaszlikowski, A. Sen(De), U. Sen, V. Vedral, A. Winter, Phys. Rev. Lett. 101, 070502 (2008)

    Article  ADS  Google Scholar 

  12. M. Piani, P. Horodecki, R. Horodecki, Phys. Rev. Lett. 100, 090502 (2008)

    Article  ADS  Google Scholar 

  13. M. Piani, M. Christandl, C.E. Mora, P. Horodecki, Phys. Rev. Lett. 102, 250503 (2009)

    Article  ADS  Google Scholar 

  14. Y. Makhlin, G. Schoen, A. Shnirman, Nature 398, 305 (1999)

    Article  ADS  Google Scholar 

  15. Y.X. Liu, L.F. Wei, J.S. Tsai, F. Nori, Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  16. C.J. Hood, M.S. Chapman, T.W. Lynn, H.J. Kimble, Phys. Rev. Lett. 80, 4157 (1998)

    Article  ADS  Google Scholar 

  17. P. Kok, W.J. Munro, K. Nemoto, T.C. Ralph, J.P. Dowling, G.J. Milburn, Rev. Mod. Phys. 79, 135 (2007)

    Article  ADS  Google Scholar 

  18. Y. Makhlin, G. Schön, A. Shnirman, Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  19. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007)

    Article  ADS  Google Scholar 

  20. M. Blencowe, Nature 468, 44 (1010)

    Article  ADS  Google Scholar 

  21. I. Chiorescu, N. Groll, S. Bertaina, T. Mori, S. Myiashita, Phys. Rev. B 82, 024413 (2010)

    Article  ADS  Google Scholar 

  22. D.I. Schuster, A.P. Sears, E. Ginossar, L. DiCarlo, L. Frunzio, J.J.L. Morton, H. Wu, G.A.D. Briggs, B.B. Buckley, D.D. Awschalom, R.J. Schoelkopf, Phys. Rev. Lett. 105, 140501 (2010)

    Article  ADS  Google Scholar 

  23. Y. Kubo, F.R. Ong, P. Bertet, D. Vion, V. Jacques, D. Zheng, A. Dréau, J.-F. Roch, A. Auffeves, F. Jelezko, J. Wrachtrup, M.F. Barthe, P. Bergonzo, D. Esteve, Phys. Rev. Lett. 105, 140502 (2010)

    Article  ADS  Google Scholar 

  24. H. Wu, R.E. George, J.H. Wesenberg, K. Molmer, D.I. Schuster, R.J. Schoelkopf, K.M. Itoh, A. Ardavan, J.J.L. Morton, G.A. Briggs, Phys. Rev. Lett. 105, 140503 (2010)

    Article  ADS  Google Scholar 

  25. V.N. Golovach, A. Khaetskii, D. Loss, Phys. Rev. Lett. 93, 016601 (2004)

    Article  ADS  Google Scholar 

  26. A.V. Khaetskii, Y.V. Nazarov, Phys. Rev. B 61, 12639 (2000)

    Article  ADS  Google Scholar 

  27. H.-A. Engel, D. Loss, Phys. Rev. B 65, 195321 (2002)

    Article  ADS  Google Scholar 

  28. F.H.L. Koppens, C. Buizert, K.J. Tielrooij, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, Nature 442, 766 (2006)

    Article  ADS  Google Scholar 

  29. K.C. Nowack, F.H.L. Koppens, Y.V. Nazarov, L.M.K. Vandersypen, Science 318, 1430 (2007)

    Article  ADS  Google Scholar 

  30. V.N. Golovach, M. Borhani, D. Loss, Phys. Rev. B 74, 165319 (2006)

    Article  ADS  Google Scholar 

  31. E.A. Laird, C. Barthel, E.I. Rashba, C.M. Marcus, M.P. Hanson, A.C. Gossard, Phys. Rev. Lett. 99, 246601 (2007)

    Article  ADS  Google Scholar 

  32. J.T. Petta, A.C. Johnson, J.M. Taylor, E.A. Laird, A. Yacoby, M.D. Lukin, C.M. Marcus, M.P. Hanson, A.C. Gossard, Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  33. T. Fujisawa, T.H. Oosterkamp, W.G. van der Wiel, B.W. Broer, R. Aguado, S. Tarucha, L.P. Kouwenhoven, Science 282, 932 (1998)

    Article  ADS  Google Scholar 

  34. T.H. Oosterkamp, T. Fujisawa, W.G. van der Wiel, K. Ishibashi, R.V. Hijman, S. Tarucha, L.P. Kouwenhoven, Nature 395, 873 (1998)

    Article  ADS  Google Scholar 

  35. A. Blais, R.-S. Huang, A. Wallraff, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 69, 062320 (2004)

    Article  ADS  Google Scholar 

  36. A. Blais, J. Gambetta, A. Wallraff, D.I. Schuster, S.M. Girvin, M.H. Devoret, R.J. Schoelkopf, Phys. Rev. A 75, 032329 (2007)

    Article  ADS  Google Scholar 

  37. A. Wallraff, D.I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S.M. Girvin, R.J. Schoelkopf, Nature 431, 162 (2004)

    Article  ADS  Google Scholar 

  38. D.I. Schuster, A.A. Houck, J.A. Schreier, A. Wallraff, J.M. Gambetta, A. Blais, L. Frunzio, J. Majer, B. Johnson, M.H. Devoret, Nature 445, 515 (2007)

    Article  ADS  Google Scholar 

  39. Q.Q. Wu, J.Q. Liao, L.M. Kuang, Chin. Phys. Lett. 25, 1179 (2008)

    Article  ADS  Google Scholar 

  40. J. Majer, J.M. Chow, J.M. Gambetta, Jens Koch, B.R. Johnson, J.A. Schreier, L. Frunzio, D.I. Schuster, A.A. Houck, A. Wallraff, Nature 449, 443 (2007)

    Article  ADS  Google Scholar 

  41. M.A. Sillanpää, J.I. Park, R.W. Simmonds, Nature 449, 438 (2007)

    Article  ADS  Google Scholar 

  42. M. Trif, V.N. Golovach, D. Loss, Phys. Rev. B 77, 045434 (2008)

    Article  ADS  Google Scholar 

  43. Z.R. Lin, G.P. Guo, T. Tu, F.Y. Zhu, G.C. Guo, Phys. Rev. Lett. 101, 230501 (2008)

    Article  ADS  Google Scholar 

  44. P. Pei, C. Li, J.S. Jin, H.S. Song, J. Phys. B 44, 035501 (2011)

    Article  ADS  Google Scholar 

  45. G. Burkard, A. Imamoglu, Phys. Rev. B 74, 041307 (2006)

    Article  ADS  Google Scholar 

  46. J.M. Taylor, M.D. Lukin, e-printarXiv:cond-mat/0605144 (2006)

  47. J.M. Taylor, J.R. Petta, A.C. Johnson, A. Yacoby, C.M. Marcus, M.D. Lukin, Phys. Rev. B 76, 035315 (2007)

    Article  ADS  Google Scholar 

  48. O.N. Jouravlev, Y.V. Nazarov, Phys. Rev. Lett. 96, 176804 (2006)

    Article  ADS  Google Scholar 

  49. F.H.L. Koppens, C. Buizert, I.T. Vink, K.C. Nowack, T. Meunier, L.P. Kouwenhoven, L.M.K. Vandersypen, J. Appl. Phys. 101, 081706 (2007)

    Article  ADS  Google Scholar 

  50. M. Xiao, I. Martin, E. Yablonovitch, H.W. Jiang, Nature 430, 435 (2004)

    Article  ADS  Google Scholar 

  51. T. Lindström, C.H. Webster, J.E. Healey, M.S. Colclough, C.M. Muirhead, A. Ya Tzalenchuk, Supercond. Sci. Technol. 20, 814 (2007)

    Article  ADS  Google Scholar 

  52. T. Niemczyk, F. Deppe, H. Huebl, E.P. Menzel, F. Hocke, M.J. Schwarz, J.J. Garcia-Ripoll, D. Zueco, T. Hümmer, E. Solano, A. Marx, R. Gross, Nature Phys. 6, 772 (2010)

    Article  ADS  Google Scholar 

  53. M. Boissonneault, J.M. Gambetta, A. Blais, Phys. Rev. A 79, 013819 (2009)

    Article  ADS  Google Scholar 

  54. J. Gambetta, A. Blais, D.I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M.H. Devoret, S.M. Girvin, R.J. Schoelkopf, Phys. Rev. A 74, 042318 (2006)

    Article  ADS  Google Scholar 

  55. K. Lalumière, J.M. Gambetta, A. Blais, Phys. Rev. A 81, R040301 (2010)

    Article  ADS  Google Scholar 

  56. T. Yu, J.H. Eberly, Quantum. Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

  57. M. Ali, G. Alber, A.R.P. Rau, J. Phys. B At. Mol. Opt. Phys. 42, 025501 (2009)

    Article  ADS  Google Scholar 

  58. A.R.P. Rau, J. Phys. A Math. Theor. 42, 412002 (2009)

    Article  MathSciNet  Google Scholar 

  59. W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  60. S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  61. J.B. Yuan, L.M. Kuang, J.Q. Liao, J. Phys. B At. Mol. Opt. Phys. 43, 165503 (2010)

    Article  ADS  Google Scholar 

  62. A. Olaya-Castro, C.F. Lee, F.F. Olsen, N.F. Johnson, Phys. Rev. B 78, 085115 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Kuang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, Q.Q., Tan, Q.S. & Kuang, L.M. Controllable coupling and quantum correlation dynamics of two double quantum dots coupled via a transmission line resonator. Eur. Phys. J. B 83, 465–474 (2011). https://doi.org/10.1140/epjb/e2011-20072-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20072-7

Keywords

Navigation