Skip to main content
Log in

Tunneling in mesoscopic junctions using the numerical renormalization group method

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have applied the Numerical Renormalization Group method to study a mesoscopic system consisting of two samples of a metal separated by an insulating barrier with nanometer dimensions. It allows the tunnelling of a single electron from one side to the other side of the junction. The junction is represented by a generalized orthodox model, which considers the electronic scattering interaction due to the hole and the tunnelling electrons, localized in the source and in the drain electrode, respectively. We have calculated the static properties (charge transfer, charge average, quadractic charge average and specific heat) and the electric conductivity of the junction for the model parameters given by the tunneling matrix element t, the barrier energy U = e 2/2C (where C is the capacitance of the system) and by the electronic scattering potentials V L(R) acting on the electrons of the left(right) electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.V. Averin, K.K. Likharev, Mesoscopic Phenomena in Solids, edited by B.L. Altshuler, P.A. Lee, R. Webb (Elsevier, Amsterdam, 1991)

  2. H. Grabert, M.H. Devoret, Single Charge tunnelling – Coulomb Blockade Phenomena in Nanostructures (Plenum Press. N.Y., 1992)

  3. M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992)

    Article  ADS  Google Scholar 

  4. K. Flensberg, M. Jonson, Phys. Rev. B 43, 7586 (1991)

    Article  ADS  Google Scholar 

  5. H.O. Frota, K. Flensberg, Phys. Rev. B 46, 15207 (1992)

    Article  ADS  Google Scholar 

  6. F. Guinea, M. Ueda, Phys. Rev. B 49, 5722 (1994)

    Article  ADS  Google Scholar 

  7. M. Ueda, F. Guinea, Z. Phys. B: Condens. Matter 85, 413 (1991)

    Article  ADS  Google Scholar 

  8. S. Drewes, S.R. Renn, F. Guinea, Phys. Rev. Lett. 80, 1046 (1998)

    Article  ADS  Google Scholar 

  9. M. Ueda, S. Kurihara, Phys. Rev. B 46, 12568 (1992)

    Article  ADS  Google Scholar 

  10. K.G. Wilson, Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  11. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1003 (1980)

    Article  ADS  Google Scholar 

  12. H.R. Krishna-murthy, J.W. Wilkins, K.G. Wilson, Phys. Rev. B 21, 1044 (1980)

    Article  ADS  Google Scholar 

  13. H.O. Frota, L.N. Oliveira, Phys. Rev. B (RC) 33, 7871 (1986)

    Article  ADS  Google Scholar 

  14. G.D. Mahan, Phys. Rev. 153, 882 (1967)

    Article  ADS  Google Scholar 

  15. G.D. Mahan, Phys. Rev. 163, 612 (1967)

    Article  ADS  Google Scholar 

  16. S. Gasiorowicz, Quantum Physics (John Wilei & Sons, Inc.. N. Y., 1974)

  17. M. Yoshida, A.C. Seridonio, L.N. Oliveira, Phys. Rev. B 80, 235317 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. O. Frota.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frota, H.O., Pinto, J.W.M. Tunneling in mesoscopic junctions using the numerical renormalization group method. Eur. Phys. J. B 81, 215–224 (2011). https://doi.org/10.1140/epjb/e2011-20046-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-20046-9

Keywords

Navigation