Skip to main content
Log in

Tubular fullerenes inside carbon nanotubes: optimal molecular orientation versus tube radius

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We present an investigation of the orientations and positions of tubular fullerene molecules (C90, ..., C200) encapsulated in single-walled carbon nanotubes (SWCNT), a series of so-called fullerene nanopeapods. We find that increasing the tube radius leads to the following succession of energetically stable regimes: (1) lying molecules positioned on the tube's long axis; (2) tilted molecules on the tube's long axis; and (3) lying molecules shifted away from the tube's long axis. As opposed to C70 and C80 molecules encapsulated in a SWCNT, standing orientations do not develop. Our results are relevant for the possible application of molecular-orientation-dependent electronic properties of fullerene nanopeapods, and also for the interpretation of future experiments on double-walled carbon nanotube formation by annealing fullerene peapod systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature (London) 396, 323 (1998)

    Article  ADS  Google Scholar 

  2. T. Hayashi, Y.A. Kim, T. Matoba, M. Esaka, K. Nishimura, T. Tsukada, M. Endo, M.S. Dresselhaus, Nano Lett. 3, 887 (2003)

    Article  ADS  Google Scholar 

  3. M. Monthioux, E. Flahaut, J.-P. Cleuziou, J. Mater. Res. 21, 2774 (2006)

    Article  ADS  Google Scholar 

  4. R. Kitaura, H. Shinohara, Chem. Asian J. 1, 646 (2006)

    Article  Google Scholar 

  5. K.H. Michel, B. Verberck, A.V. Nikolaev, Phys. Rev. Lett. 95, 185506 (2005)

    Article  ADS  Google Scholar 

  6. S. Rols, J. Cambedouzou, M. Chorro, H. Schober, V. Agafonov, P. Launois, V. Davydov, A.V. Rakhmanina, H. Kataura, J.-L. Sauvajol, Phys. Rev. Lett. 101, 065507 (2008)

    Article  ADS  Google Scholar 

  7. K. Hirahara, S. Bandow, K. Suenaga, H. Kato, T. Okazaki, H. Shinohara, S. Iijima, Phys. Rev. B 64, 115420 (2001)

    Article  ADS  Google Scholar 

  8. A.N. Khlobystov, R. Scipioni, D. Nguyen-Manh, D.A. Britz, D.G. Pettifor, G.A.D. Briggs, S.G. Lyapin, A. Ardavan, R.J. Nicholas, Appl. Phys. Lett. 84, 792 (2004)

    Article  ADS  Google Scholar 

  9. L. Guan, H. Li, Z. Shi, L. You, Z. Gu, Solid State Commun. 133, 333 (2005)

    Article  ADS  Google Scholar 

  10. M. Chorro, A. Delhey, L. Noé, M. Monthioux, P. Launois, Phys. Rev. B 75, 035416 (2007)

    Article  ADS  Google Scholar 

  11. B. Verberck, K.H. Michel, Phys. Rev. B 75, 045419 (2007)

    Article  ADS  Google Scholar 

  12. B. Verberck, Phys. Rev. B 83, 045405 (2011)

    Article  ADS  Google Scholar 

  13. P.W. Fowler, D.E. Manolopoulos, An atlas of fullerenes (Oxford University Press, Oxford, 1995)

  14. Y. Sato, K. Suenaga, S. Okubo, T. Okazai, S. Iijima, Nano Lett. 7, 3704 (2007)

    Article  ADS  Google Scholar 

  15. B.J. Cox, N. Thamwattana, J.M. Hill, J. Phys. A: Math. Theor. 41, 235209 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  16. S. Okubo, T. Okazaki, K. Hirose-Takai, K. Suenaga, S. Okada, S. Bandow, S. Iijima, J. Am. Chem. Soc. 132, 15252 (2010)

    Article  Google Scholar 

  17. C.J. Bradley, A.P. Cracknell, The Mathematical Theory of Symmetry in Solids (Clarendon, Oxford, 1972)

  18. B. Verberck, K.H. Michel, Phys. Rev. B 74, 045421 (2006)

    Article  ADS  Google Scholar 

  19. N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  20. D.H. Robertson, D.W. Brenner, J.W. Mintmire, Phys. Rev. B 45, 12592 (1992)

    Article  ADS  Google Scholar 

  21. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

  22. D. Lamoen, K.H. Michel, Z. Phys. B: Condens. Matter 92, 323 (1993)

    Article  ADS  Google Scholar 

  23. J.R.D. Copley, K.H. Michel, J. Phys.: Condens. Matter 5, 4353 (1993)

    Article  ADS  Google Scholar 

  24. P. Launois, S. Ravy, R. Moret, Phys. Rev. B 55, 2651 (1997)

    Article  ADS  Google Scholar 

  25. K.H. Michel, J.R.D. Copley, Z. Phys. B: Condens. Matter 103, 369 (1997)

    Article  ADS  Google Scholar 

  26. M. Sprik, A. Cheng, M.L. Klein, Phys. Rev. Lett. 69, 1660 (1992)

    Article  ADS  Google Scholar 

  27. B.W. Smith, D.E. Luzzi, Chem. Phys. Lett. 321, 169 (2000)

    Article  ADS  Google Scholar 

  28. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijmia, Chem. Phys. Lett. 337, 48 (2001)

    Article  ADS  Google Scholar 

  29. P. Launois, M. Chorro, B. Verberck, P.-A. Albouy, S. Rouzière, D. Colson, A. Forget, L. Noé, H. Kataura, M. Monthioux, J. Cambedouzou, Carbon 48, 89 (2010)

    Article  Google Scholar 

  30. B. Verberck, J. Cambedouzou, G.A. Vliegenthart, G. Gompper, P. Launois, Carbon 49, 2007 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Verberck.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verberck, B., Tarakina, N. Tubular fullerenes inside carbon nanotubes: optimal molecular orientation versus tube radius. Eur. Phys. J. B 80, 355–362 (2011). https://doi.org/10.1140/epjb/e2011-10952-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10952-1

Keywords

Navigation