Skip to main content

Advertisement

Log in

Calculation of shuffle 60° dislocation width and Peierls barrier and stress for semiconductors silicon and germanium

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The dislocation width for shuffle 60° dislocation in semiconductors Si and Ge have been calculated by the improved P-N theory in which the discrete effect has been taken into account. Peierls barrier and stress have been evaluated with considering the contribution of strain energy. The discrete effect make dislocation width wider, and Peierls barrier and stress lower. The dislocation width of 60° dislocation in Si and Ge is respectively about 3.84 Å and 4.00 Å (∼1b, b is the Burgers vector). In the case of 60° dislocation, after considering the contribution of strain energy, Peierls barrier and stress are increased. The Peierls barrier for 60° dislocation in Si and Ge is respectively about 15 meV/Å and 12–14 meV/Å, Peierls stress is about 3.8 meV/Å3 (0.6 GPa) and 2.7–3.3 meV/Å3 (0.4–0.5 GPa). The Peierls stress for Si agrees well with the numerical results and the critical stress at 0 K extrapolated from experimental data. Ge behaves similarly to Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.P. Hirth, J. Lothe, Theory of Dislocations, 2nd edn. (Wiley, New York, 1982)

  2. P.B. Hirsch, Sci. Technol. 1, 666 (1985)

    Google Scholar 

  3. M.S. Duesbery, G.Y. Richardson, Crit, Rev. Solid State Mater. Sci. 17, 1 (1991)

    Article  Google Scholar 

  4. H. Alexander, H. Teichler, in Materials Science and Technology, edited by R.W. Cahn, P. Hassen, E.J. Kramer (VCH Weiheim, Cambridge, 1993), Vol. 4, p. 249

  5. Y.B. Bolkhovityanov et al., Semiconductors 37, 493 (2003)

    Article  ADS  Google Scholar 

  6. J. Rabier, J.L. Demenet, Script. Mater. 45, 1259 (2001)

    Article  Google Scholar 

  7. C.X. Li, Q.Y. Meng, G. Li, L.J. Yang, Superlattices Microstruct. 40, 113 (2006)

    Article  ADS  Google Scholar 

  8. Y.H. Jing, Q.Y. Meng, W. Zhao, Physica B 404, 2138 (2009)

    Article  ADS  Google Scholar 

  9. L. Pizzagalli, J. Godet, S. Brochard, Phys. Rev. Lett. 103, 065505 (2009)

    Article  ADS  Google Scholar 

  10. B. Joos, Q. Ren, M.S. Duesbery, Phys. Rev. B 50, 5890 (1994)

    Article  ADS  Google Scholar 

  11. R.E. Peierls, Proc. Phys. Soc. 52, 23 (1940)

    Article  Google Scholar 

  12. B. Joos, M.S. Duesbery, Phys. Rev. Lett. 78, 266 (1997)

    Article  ADS  Google Scholar 

  13. V.V. Bulatov, E. Kaxiras, Phys. Rev. Lett. 78, 4221 (1997)

    Article  ADS  Google Scholar 

  14. S.F. Wang, Phys. Rev. B 65, 094111 (2002)

    Article  Google Scholar 

  15. S.F. Wang, Chin. Phys. 14, 2575 (2005)

    Article  ADS  Google Scholar 

  16. S.F. Wang, J. Phys. A Math. Theor. 42, 025208 (2009)

    Article  ADS  Google Scholar 

  17. S.F. Wang, R.P. Liu, X.Z. Wu, J. Phys.: Condens. Matter 20, 485207 (2008)

    Article  Google Scholar 

  18. X.Z. Wu, S.F. Wang, Front. Mater. Sci. China 3, 205 (2009)

    Article  Google Scholar 

  19. S.F. Wang, H.L. Zhang. X.Z. Wu, R.P. Liu, J. Phys.: Condens. Matter 22, 055801 (2010)

    Article  ADS  Google Scholar 

  20. J.W. Christian, V. Vitek, Rep. Prog. Phys. 33, 307 (1970)

    Article  ADS  Google Scholar 

  21. K. Kang, W. Cai, Philos. Mag. 87, 2169 (2007)

    Article  ADS  Google Scholar 

  22. S.F. Wang, Phys. Lett. A 313, 408 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. S.F. Wang, Chin. Phys. 15, 1301 (2006)

    Article  ADS  Google Scholar 

  24. J. Castaing, P. Veyssiere, L.P. Kubin, J. Rabier, Philos. Mag. A 44, 1407 (1981)

    Article  ADS  Google Scholar 

  25. J. Rabier, Phys. Stat. Sol. (A) 204, 2248 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. L. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H.L. Calculation of shuffle 60° dislocation width and Peierls barrier and stress for semiconductors silicon and germanium. Eur. Phys. J. B 81, 179–183 (2011). https://doi.org/10.1140/epjb/e2011-10932-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10932-5

Keywords

Navigation