Skip to main content
Log in

Efficient approach to metal/metal oxide interfaces within variable charge model

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A modified procedure of calculating the energy of metal/oxide interfaces and surfaces in the frame of the CTIP + EAM model (charge transfer ionic potential + embedded atom method) has been developed. According to the proposed approach, local charges and positions of atoms are determined only in a restricted zone surrounding the interface, while in the remaining region they are fixed. As a result, the number of variables undergoes a significant reduction, which enables carrying out efficient calculations for metal/oxide systems. The modified procedure has been applied to studying the relaxation of the α-Al2O3 surface. Using three different forms of the CTIP + EAM model present in literature, it has been shown that the correctness of the obtained results is conditioned by the appropriate relation between the CTIP and EAM components. Finally, the relaxation of the Ni/α-Al2O3 interface has been examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.S. Moya, S. Lopez-Esteban, C. Pecharroman, Prog. Mater. Sci. 52, 1017 (2007)

    Article  Google Scholar 

  2. S. Lopez-Esteban, T. Rodriguez-Suarez, F. Esteban-Betegon, C. Pecharroman, J.S. Moya, J. Mater. Sci. 41, 5194 (2006)

    Article  ADS  Google Scholar 

  3. T. Sekino, T. Nakajima, S. Ueda, K. Niihara, J. Am. Ceram. Soc. 80, 1139 (1997)

    Article  Google Scholar 

  4. K. Sztwiertnia, M. Faryna, G. Sawina J. Eur. Ceram. Soc. 26, 2973 (2006)

    Article  Google Scholar 

  5. W. Zhang, J.R. Smith, A.G. Evans, Acta Mater. 50, 3803 (2002)

    Article  Google Scholar 

  6. S. Shi, S. Tanaka, M. Koyhama, J. Am. Ceram. Soc. 90, 2429 (2007)

    Article  Google Scholar 

  7. S. Shi, S. Tanaka, M. Koyhama, Phys. Rev. B 76, 075431 (2007)

    Article  ADS  Google Scholar 

  8. Y. Long, N.X. Chen, J. Phys.: Condens. Matter 20, 135005 (2008)

    Article  ADS  Google Scholar 

  9. S.V. Dmitriev, N.Y. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang, Y. Kagawa, Acta Mater. 52, 1959 (2004)

    Article  Google Scholar 

  10. S.V. Dmitriev, N.Y. Yoshikawa, M. Kohyama, S. Tanaka, R. Yang, Y. Tanaka, Y. Kagawa, Comput. Mater. Sci. 36, 281 (2006)

    Article  Google Scholar 

  11. F.H. Streitz, J.W. Mintmire, Phys. Rev. B 50, 11996 (1994)

    Article  ADS  Google Scholar 

  12. W.J. Mortier, K. van Genetchten, J. Gasteiger, J. Am. Chem. Soc. 107, 829 (1985)

    Article  Google Scholar 

  13. W.J. Mortier, S.K. Gosh, S. Shankar, J. Am. Chem. Soc. 108, 4315 (1986)

    Article  Google Scholar 

  14. A.K. Rappe, W.A. Goddard, J. Phys. Chem. 95, 3358 (1991)

    Article  Google Scholar 

  15. X.W. Zhou, H.N.G. Wadley, J.-S. Filhol, M.N. Neurock, Phys. Rev. B 69, 035402 (2004)

    Article  ADS  Google Scholar 

  16. X.W. Zhou, H.N.G. Wadley, J. Phys.: Condens. Matter 17, 3619 (2005)

    Article  ADS  Google Scholar 

  17. MATLAB Reference Guide (The Math Works, Natick, MA, 2011)

  18. D.L. Medlin, K.F. McCarty, R.Q. Hwang, S.E. Gurthire, M.I. Baskes, Thin Solid Films 299, 110 (1997)

    Article  ADS  Google Scholar 

  19. K. Nalepka, R.B. Pȩcherski, Mechanics and Control 29, 132 (2010)

    Google Scholar 

  20. K. Nalepka, R.B. Pȩcherski, Archives of Metallurgy and Materials 54, 512 (2009)

    Google Scholar 

  21. P. Villars, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International (OH), 1991)

  22. P.E. Gill, W. Murray, M.H. Wright, Practical Optimization (Academic Press, London, UK, 1981)

  23. R. Flecher, Practical Methods of Optimization (Wiley, Chichester, 1980)

  24. J.C. Slater, Symmetry and Energy Bands in Crystals (Dover, New York, 1972)

  25. CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton, 1978)

  26. I. Manassidis, A. DeVita, M.J. Gillan, Surf. Sci. Lett. 285, L517 (1993)

    Article  Google Scholar 

  27. X.W. Zhou, H.N.G. Wadley, R.A. Johnson, D.J. Larson, N. Tabat, A. Cerezo, A.K. Petford-Long, G.D.W. Smith, P.H. Clifton, R.L. Martens, T.F. Kelly, Acta Mater. 49, 4005 (2001)

    Article  Google Scholar 

  28. M.W. Finnis, J. Phys.: Condens. Matter 18, 5811 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Nalepka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalepka, K. Efficient approach to metal/metal oxide interfaces within variable charge model. Eur. Phys. J. B 85, 45 (2012). https://doi.org/10.1140/epjb/e2011-10839-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2011-10839-1

Keywords

Navigation