Skip to main content
Log in

An ab initio study of PuO2±0.25, UO2±0.25, and U0.5Pu0.5O2±0.25

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Hybrid density functional theory has been used to systematically study the electronic, geometric, and magnetic properties of strongly correlated materials PuOx , UOx , and U0.5Pu0.5Ox with x = 0.25. The calculations have been performed using the all-electron full- potential linearized augmented plane wave plus local orbitals basis (FP-L/APW+lo) method. Each compound has been studied at the ferromagnetic (FM) and anti-ferromagnetic (AFM) configurations with and without spin-orbit coupling (SOC) and full geometry optimizations. The optimized lattice constants, bulk moduli, and band gaps are reported. Total energy calculations indicate that the ground states are AFM for all compounds studied here and the band gaps are typically higher than 1.0 eV, characteristic of semiconductors. The total energy is lowered significantly and the band gaps increase with the inclusion of SOC. The chemical bonds between the actinide metals and oxygen atoms are primarily ionic in character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Los Alamos Science, edited by N.G. Cooper (Los Alamos National Laboratory, Los Alamos, NM 2000), Vol. 26

  2. F. Weigel, J.J. Katz, G.T. Seaborg, in The Chemistry of the Actinide Elements, edited by J.J. Katz, G.T. Seaborg, L.R. Morss (Chapman & Hall, New York, 1986), Vol. 1, p. 680

  3. J.M. Haschke, T.H. Allen, L.A. Morales, Science 287, 285 (2000)

    Article  ADS  Google Scholar 

  4. M. Idiri, T. Le Bihan, S. Heathman, J. Rebizant, Phys. Rev. B 70, 014113 (2004)

    Article  ADS  Google Scholar 

  5. H.Y. Geng, Y. Chen, Y. Kaneta, M. Kinoshita, Phys. Rev. B 75, 054111 (2007)

    Article  ADS  Google Scholar 

  6. H.Y. Geng, Y. Chen, Y. Kaneta, M. Iwasawa, T. Ohnuma, M. Kinoshita, Phys. Rev. B 77, 104120 (2008)

    Article  ADS  Google Scholar 

  7. B.T.M. Willis, J. Chem. Soc., Faraday Trans. 2 83, 1073 (1987)

    Article  Google Scholar 

  8. S.D. Conradson, D. Manara, F. Wastin, D.L. Clark, G.H. Lander, L.A. Morales, J. Rebizant, V.V. Rondinella, Inorg. Chem. 43, 6922 (2004)

    Article  Google Scholar 

  9. D.A. Andersson, T. Watanabe, C. Deo, B.P. Uberuaga, Phys. Rev. B 80, R060101 (2009)

    Article  ADS  Google Scholar 

  10. D.A. Andersson, J. Lezama, B.P. Uberuaga, C. Deo, S.D. Conradson, Phys. Rev. B 79, 024110 (2009)

    Article  ADS  Google Scholar 

  11. B.T.M. Willis, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 34, 88 (1978)

    Article  ADS  Google Scholar 

  12. D.J.M. Bevan, I.E. Grey, B.T.M. Willis, J. Solid State Chem. 61, 1 (1986)

    Article  ADS  Google Scholar 

  13. Y. Sagayama, Proc. Global 2007 (Boise, Idaho, USA, 2007), p. 251

  14. H. Funasaka, M. Ito, Proc. Global 2007 (Boise, Idaho, USA, 2007), p. 259

  15. J.C. Boettger, A.K. Ray, Int. J. Quantum Chem. 80, 824 (2000)

    Article  Google Scholar 

  16. X. Wu, A.K. Ray, Eur. Phys. J. B 19, 343 (2001)

    Article  ADS  Google Scholar 

  17. K.N. Kudin, G.E. Scuseria, R.L. Martin, Phys. Rev. Lett. 89, 266402 (2003)

    Article  ADS  Google Scholar 

  18. J. Schoenes, J. Appl. Phys. 49, 1463 (1978)

    Article  ADS  Google Scholar 

  19. C.E. McNeilly, J. Nucl. Mater. 11, 53 (1964)

    Article  ADS  Google Scholar 

  20. M. Butterfield, T. Durakiewicz, E. Guziewicz, J. Joyce, A. Arko, K. Graham, D. Moore, L. Morales, Surf. Sci. 571, 74 (2004)

    Article  ADS  Google Scholar 

  21. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  22. L. Petit, A. Svane, Z. Szotek, W. Temmerman, Science 301, 498 (2003)

    Article  ADS  Google Scholar 

  23. A. Svane, L. Petit, Z. Szotek, W.M. Temmerman, Phys. Rev. B 76, 115116 (2007)

    Article  ADS  Google Scholar 

  24. R. Atta-Fynn, A.K. Ray, Chem. Phys. Lett. 482, 223 (2009)

    Article  ADS  Google Scholar 

  25. J. Wang, L. Ma, A.K. Ray, Phys. Lett. A 374, 4704 (2010)

    Article  ADS  Google Scholar 

  26. K.N. Kudin, G.E. Scuseria, R.L. Martin, Phys. Rev. Lett. 89, 266402 (2002)

    Article  ADS  Google Scholar 

  27. I.D. Prodan, G.E. Scuseria, J.A. Sordo, K.N. Kudin, R.L. Martin, J. Chem. Phys. 123, 014703 (2005)

    Article  ADS  Google Scholar 

  28. R. Atta-Fynn, A.K. Ray, Europhys. Lett. 85, 27008 (2009)

    Article  ADS  Google Scholar 

  29. F. Islam, A.K. Ray, Solid State Commun. 150 (2010) 938

  30. B. Sun, P. Zhang, X.G. Zhao, J. Chem. Phys. 128, 084705 (2008)

    Article  ADS  Google Scholar 

  31. G. Jomard, B. Amadon, F. Bottin, M. Torrent, Phys. Rev. B 78, 075125 (2008)

    Article  ADS  Google Scholar 

  32. A. Georges, G. Kotliar, W. Krauth, M.J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  33. S.Y. Savrasov, G. Kotliar, E. Abrahams, Nature (London) 793, 410 (2001)

    Google Scholar 

  34. L. Ma, R. Atta-Fynn, A.K. Ray, submitted for publication

  35. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  36. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    Article  ADS  MATH  Google Scholar 

  37. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2K, An Augmented Plane Wave+Local Orbitals Program for Calculating Crystal Properties (Technische Universität Wien, Austria, 2001)

  38. F. Tran, P. Blaha, K. Schwarz, Phys. Rev. B 74, 155108 (2006)

    Article  ADS  Google Scholar 

  39. P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B 49, 16223 (1994)

    Article  ADS  Google Scholar 

  40. P. Blaha, K. Schwarz, P.I. Sorantin, S.B. Trickey, Comput. Phys. Commun. 59, 399 (1990)

    Article  ADS  Google Scholar 

  41. M. Petersen, F. Wagner, L. Hufnagel, M. Scheffler, P. Blaha, K. Schwarz, Comput. Phys. Commun. 126, 294 (2000)

    Article  ADS  MATH  Google Scholar 

  42. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. E.R. Gardner, T.L. Markin, R.S. Street, J. Inorg. Nucl. Chem. 27, 541 (1965)

    Article  Google Scholar 

  44. L.R. Morss, L.R. in The Chemistry of the Actinide Elements, 2nd edn. (edited by J.J. Katz, G.T. Seaborg, L.R. Morss, Chapman and Hall, London, 1986), Vol. 2, pp. 1278–1360

  45. P. Villars, L.D. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases, 2nd edn. (ASM International, Materials Park, Ohio, 1991)

  46. J. Schoenes, J. Appl. Phys. 49, 1463 (1978)

    Article  ADS  Google Scholar 

  47. P.A. Korzhavyi, L. Vitos, D.A. Andersson, B. Johansson, Nat. Mater. 3, 225 (2004)

    Article  ADS  Google Scholar 

  48. L. Vegard, Die Konstitution der Mischkristalle und die Raumfüllung der Atome, Z. Physik 5, 17 (1921)

    Article  ADS  Google Scholar 

  49. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  50. B. Dorado, G. Jomard, M. Freyss, M. Bertolus, Phys. Rev. B 82, 035114 (2010)

    Article  ADS  Google Scholar 

  51. R. Laskowski, G.K.H. Madsen, P. Blaha, K. Schwarz, Phys. Rev. B 69, R140408 (2004)

    Article  ADS  Google Scholar 

  52. D. Gao, A.K. Ray Phys. Rev. B 77, 035123 (2008)

    ADS  Google Scholar 

  53. R. Atta-Fynn, A.K. Ray, Phys. Rev. B 76, 115101 (2007)

    Article  ADS  Google Scholar 

  54. M. Freyss, N. Vergnet, T. Petit, J. Nucl. Mater. 352, 144 (2006)

    Article  ADS  Google Scholar 

  55. P. Martin, S. Grandjean, M. Ripert, M. Freyss, P. Blanc, T. Petit, J. Nucl. Mater. 320, 138 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Ray.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Ray, A.K. An ab initio study of PuO2±0.25, UO2±0.25, and U0.5Pu0.5O2±0.25 . Eur. Phys. J. B 81, 103–113 (2011). https://doi.org/10.1140/epjb/e2011-10759-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10759-0

Keywords

Navigation