Skip to main content
Log in

Ginzburg–Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Plane Couette flow, the flow between two parallel planes moving in opposite directions, is an example of wall-bounded flow experiencing a transition to turbulence with an ordered coexistence of turbulent and laminar domains in some range of Reynolds numbers [R g, R t] . When the aspect-ratio is sufficiently large, this coexistence occurs in the form of alternately turbulent and laminar oblique bands. As R goes up trough the upper threshold R t, the bands disappear progressively to leave room to a uniform regime of featureless turbulence. This continuous transition is studied here by means of under-resolved numerical simulations understood as a modelling approach adapted to the long time, large aspect-ratio limit. The state of the system is quantitatively characterised using standard observables (turbulent fraction and turbulence intensity inside the bands). A pair of complex order parameters is defined for the pattern which is further analysed within a standard Ginzburg–Landau formalism. Coefficients of the model turn out to be comparable to those experimentally determined for cylindrical Couette flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Cole, J. Fluid Mech. 25, 385 (1966)

    Google Scholar 

  2. Ch. Van Atta, J. Fluid Mech. 25, 495 (1966)

    Article  ADS  Google Scholar 

  3. D. Coles, Ch. Van Atta, J. Fluid Mech. 25, 513 (1966)

    Article  ADS  Google Scholar 

  4. C.D. Anderek, S.S. Liu, H.L. Swinney, J. Fluid Mech. 164, 155 (1986)

    Article  ADS  Google Scholar 

  5. J.J. Hegseth, C.D. Andereck, F. Hayot, Y. Pomeau, Phys. Rev. Lett. 62, 257 (1989)

    Article  ADS  Google Scholar 

  6. A. Prigent, La spirale turbulente: motif de grande longueur d’onde dans les écoulements cisaillés turbulents, Ph.D. thesis, Université Paris-Sud, 2001

  7. A. Prigent, G. Grégoire, H. Chaté, O. Dauchot, W. van Saarlos, Phys. Rev. Lett. 89, 014501 (2002)

    Article  ADS  Google Scholar 

  8. A. Prigent, G. Grégoire, H. Chaté, O. Dauchot, Physica D 174, 100 (2003)

    Article  MATH  ADS  Google Scholar 

  9. P. Manneville, A. Prigent, O. Dauchot, Banded turbulence in cylindical and plane Couette flow, APS-DFD01 con- ference, Bull. Am. Phys. Soc. 46, 35 (2001) threshold comparisons reproduced as Figure 3 in P. Manneville, Theor. Comput. Fluid Dyn. 18, 169 (2004)

    Google Scholar 

  10. D. Barkley, L. Tuckerman, Phys. Rev. Lett. 94, 014502 (2005)

    Article  ADS  Google Scholar 

  11. D. Barkley, L. Tuckerman, J. Fluid Mech. 574, 109 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  12. Y. Duguet, P. Schlatter, D.S. Henningson, J. Fluid. Mech. 650, 119 (2010)

    Article  MATH  ADS  Google Scholar 

  13. A. Meseguer, F. Mellibovsky, M. Avila, F. Marques, Phys. Rev. E 80, 046315 (2009)

    Article  ADS  Google Scholar 

  14. S. Dong, Phys. Rev. E 80, 067301 (2009)

    Article  ADS  Google Scholar 

  15. T. Tsukahara, Y. Seki, H. Kawamura, D. Tochio, DNS of turbulent channel flow at very low Reynolds numbers, in Turbulence and Shear Flow Phenomena 4 Williamsburg, edited by J.A.C. Humphrey et al., 935 (2005)

  16. L.S. Tuckerman, D. Barley, O. Dauchot, Instability of uniform turbulent plane Couette flow: spectra, probability distribution functions and \(K\)-\(\Omega\) closure model, Seventh IUTAM Symposium on Laminar-Turbulent Transition, edited by P. Schlatter, D.S. Henningson (Springer, 2010)

  17. D. Barkley, O. Dauchot, L. Tuckerman, J. Phys., Conf. Ser. 137, 012029 (2008), 15th Couette-Taylor Conference (Le Havre, July 2007)

    Article  ADS  Google Scholar 

  18. J. Gibson http://www.cns.gatech.edu/channelflow/

  19. J. Rolland, P. Manneville, Oblique turbulent bands in plane Couette Flow: from visual to quantitative data, 16th Couette-Taylor Workshop (Princeton, 2009)

  20. P. Manneville, J. Rolland, On modelling transitional turbulent flows using under-resolved direct numerical simulations, Theor. Comput. Fluid Dyn. Online First, DOI 10.1007/s00162-010-0215-5

  21. J. Jiménez, P. Moin, J. Fluid Mech. 225, 213 (1991)

    Article  MATH  ADS  Google Scholar 

  22. S. Bottin, F. Daviaud, P. Manneville, O. Dauchot, Europhys. Lett. 43, 171 (1998)

    Article  ADS  Google Scholar 

  23. M. Scherer, G. Ahler, F. Hörner, I. Rehberg, Phys. Rev. Lett. 85, 3754 (2000)

    Article  ADS  Google Scholar 

  24. B.J. McKeon, K.R. Sreenivasan, Scaling and structure in high Reynolds number wall-bounded flows, edited by B.J. McKeon, K.R. Sreenivasan, theme issue, Phil. Trans. R. Soc. A 365, (2007)

  25. S. Bottin, H. Chaté, Eur. Phys. J. B 6, 143 (1998)

    Article  ADS  Google Scholar 

  26. J. Rolland, P. Manneville, J. Stat. Phys. 142, 577 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  27. N.G. Van Kampen, Stochastic processes in physics and chemistry (North-Holland, Amsterdam, 1983)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Rolland.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rolland, J., Manneville, P. Ginzburg–Landau description of laminar-turbulent oblique band formation in transitional plane Couette flow. Eur. Phys. J. B 80, 529–544 (2011). https://doi.org/10.1140/epjb/e2011-10730-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10730-1

Keywords

Navigation