Skip to main content
Log in

Coevolving agent strategies and network topology for the public goods games

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

Much of human cooperation remains an evolutionary riddle. Coevolutionary public goods games in structured populations are studied where players can change from an unproductive public goods game to a productive one, by evaluating the productivity of the public goods games. In our model, each individual participates in games organized by its neighborhood plus by itself. Coevolution here refers to an evolutionary process entailing both deletion of existing links and addition of new links between agents that accompanies the evolution of their strategies. Furthermore, we investigate the effects of time scale separation of strategy and structure on cooperation level. This study presents the following: Foremost, we observe that high cooperation levels in public goods interactions are attained by the entangled coevolution of strategy and structure. Presented results also confirm that the resulting networks show many features of real systems, such as cooperative behavior and hierarchical clustering. The heterogeneity of the interaction network is held responsible for the observed promotion of cooperation. We hope our work may offer an explanation for the origin of large-scale cooperative behavior among unrelated individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Smith, Evolution and the Theory of Games (Cambridge University Press, 1982)

  2. H. Gintis, Game theory evolving (Princeton Univ. Press, Princeton, NJ, 2000)

  3. A. Colman, Game theory and its applications in the social and biological sciences (Garland Science, 1998)

  4. R. Axelrod, The Evolution of Cooperation (Basic books, New York, 1984)

  5. J. Hofbauer, K. Sigmund, Evolutionary Games and Population Dynamics (1998)

  6. J. Kagel, A. Roth, J. Hey, The handbook of experimental economics (Princeton Univ. Press, Princeton, NJ, 1995)

  7. C. Hauert, M. Holmes, M. Doebeli, Proc. R. Soc. B 273, 2565 (2006)

    Article  Google Scholar 

  8. D. Semmann, H. Krambeck, M. Milinski, Nature 425, 390 (2003)

    Article  ADS  Google Scholar 

  9. G. Szabó, C. Hauert, Phys. Rev. Lett. 89, 118101 (2002)

    Article  ADS  Google Scholar 

  10. M. Doebeli, C. Hauert, T. Killingback, Science 306, 859 (2004)

    Article  ADS  Google Scholar 

  11. R. Axelrod, W. Hamilton, Science 211, 1390 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. M. Nowak, K. Sigmund, Nature 437, 1291 (2005)

    Article  ADS  Google Scholar 

  13. M. Nowak, K. Sigmund, J. Theor. Biol. 194, 561 (1998)

    Article  Google Scholar 

  14. M. Nowak, R. May, Nature 359, 826 (1992)

    Article  ADS  Google Scholar 

  15. R. Durrett, S. Levin, Theor. Pop. Biol. 46, 363 (1994)

    Article  MATH  Google Scholar 

  16. K. Lindgren, M. Nordahl, Physica D 75, 292 (1994)

    Article  MATH  ADS  Google Scholar 

  17. F. Santos, J. Rodrigues, J. Pacheco, Proc. R. Soc. Lond., Ser. B 273, 51 (2006)

    Article  Google Scholar 

  18. F. Santos, J. Pacheco, T. Lenaerts, Proc. Natl. Acad. Sci. USA 103, 3490 (2006)

    Article  ADS  Google Scholar 

  19. G. Szabó, G. Fáth, Phys. Rep. 446, 97 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  20. T. Clutton-Brock, G. Parker, Nature 373, 209 (1995)

    Article  ADS  Google Scholar 

  21. H. Brandt, C. Hauert, K. Sigmund, Proc. R. Soc. B 270, 1099 (2003)

    Article  Google Scholar 

  22. B. Rockenbach, M. Milinski, Nature 444, 718 (2006)

    Article  ADS  Google Scholar 

  23. D. Anna, D. Rand, F. Drew, M. Nowak, Nature 452, 348 (2008)

    Article  ADS  Google Scholar 

  24. C. Hauert, A. Traulsen, H. Brandt, M. Nowak, K. Sigmund, Science 316, 1905 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. E. Fehr, S. Gachter, Nature 415, 137 (2002)

    Article  ADS  Google Scholar 

  26. C. Wedekind, M. Milinski, Science 288, 850 (2000)

    Article  ADS  Google Scholar 

  27. H. Brandt, K. Sigmund, Proc. Natl. Acad. Sci. USA 102, 2666 (2005)

    Article  ADS  Google Scholar 

  28. F. Fu, C. Hauert, M. Nowak, L. Wang, Phys. Rev. E 78, 26117 (2008) 0.5pt

    Article  ADS  Google Scholar 

  29. C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, J. Theor. Biol. 218, 187 (2002)

    Article  MathSciNet  Google Scholar 

  30. C. Hauert, S. De Monte, J. Hofbauer, K. Sigmund, Science 296, 1129 (2002)

    Article  ADS  Google Scholar 

  31. D. Semmann, H. Krambeck, M. Milinski, Nature 425, 390 (2003)

    Article  ADS  Google Scholar 

  32. F. Santos, M. Santos, J. Pacheco, Nature 454, 213 (2008)

    Article  ADS  Google Scholar 

  33. M. Perc, A. Szolnoki, Phys. Rev. E 77, 11904 (2008)

    Article  ADS  Google Scholar 

  34. S. Bornholdt, T. Rohlf, Phys. Rev. Lett. 84, 6114 (2000)

    Article  ADS  Google Scholar 

  35. M. Zimmermann, V. Eguíluz, Phys. Rev. E 72, 56118 (2005)

    Article  ADS  Google Scholar 

  36. M. Zimmermann, V. Eguíluz, M. San Miguel, Phys. Rev. E 69, 65102 (2004)

    Article  ADS  Google Scholar 

  37. J. Pacheco, A. Traulsen, M. Nowak, Phys. Rev. Lett. 97, 258103 (2006)

    Article  ADS  Google Scholar 

  38. R. Suzuki, M. Kato, T. Arita, Phys. Rev. E 77, 21911 (2008)

    Article  ADS  Google Scholar 

  39. A. Szolnoki, M. Perc, Z. Danku, Europhys. Lett. 84, 50007 (2008)

    Article  ADS  Google Scholar 

  40. A. Szolnoki, M. Perc, Europhys. Lett. 86, 30007 (2009)

    Article  ADS  Google Scholar 

  41. L. Wardil et al., Europhys. Lett. 86, 38001 (2009)

    Article  ADS  Google Scholar 

  42. L. Wardil, J. da Silva, Phys. Rev. E 81, 36115 (2010)

    Article  ADS  Google Scholar 

  43. H. Ebel, S. Bornholdt, Phys. Rev. E 66, 56118 (2002), ISSN 1550-2376

    Article  ADS  Google Scholar 

  44. J. Pacheco, A. Traulsen, M. Nowak, Phys. Rev. Lett. 97, 258103 (2006)

    Article  ADS  Google Scholar 

  45. J. Pacheco, A. Traulsen, M. Nowak, J. Theor. Biol. 243, 437 (2006)

    Article  MathSciNet  Google Scholar 

  46. F. Santos, J. Pacheco, T. Lenaerts, PLoS Comput. Biol. 2 (2006)

  47. J. Pacheco, A. Traulsen, M. Nowak, Phys. Rev. Lett. 97, 258103 (2006)

    Article  ADS  Google Scholar 

  48. C. Roca, J. Cuesta, A. Sánchez, Phys. Rev. Lett. 97, 158701 (2006)

    Article  ADS  Google Scholar 

  49. E. Pestelacci, M. Tomassini, L. Luthi, Biol. Theory 3, 139 (2008)

    Article  Google Scholar 

  50. M. Perc, A. Szolnoki, BioSyst. 99, 109 (2010)

    Article  Google Scholar 

  51. T. Gross, B. Blasius, J. R. Soc. Interface 5, 259 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Y. Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, C., Zhang, J., Xie, G. et al. Coevolving agent strategies and network topology for the public goods games. Eur. Phys. J. B 80, 217–222 (2011). https://doi.org/10.1140/epjb/e2011-10470-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2011-10470-2

Keywords

Navigation