Skip to main content
Log in

The phase diagram of random Boolean networks with nested canalizing functions

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We obtain the phase diagram of random Boolean networks with nested canalizing functions. Using the annealed approximation, we obtain the evolution of the number b t of nodes with value one, and the network sensitivity λ, and compare with numerical simulations of quenched networks. We find that, contrary to what was reported by Kauffman et al. [Proc. Natl. Acad. Sci. 101, 17102 (2004)], these networks have a rich phase diagram, were both the “chaotic" and frozen phases are present, as well as an oscillatory regime of the value of b t . We argue that the presence of only the frozen phase in the work of Kauffman et al. was due simply to the specific parametrization used, and is not an inherent feature of this class of functions. However, these networks are significantly more stable than the variant where all possible Boolean functions are allowed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Kauffman, Nature 224, 177 (1969)

    Article  ADS  Google Scholar 

  2. S.A. Kauffman, J. Theor. Biol. 22, 437 (1969)

    Article  MathSciNet  Google Scholar 

  3. B. Drossel, in Reviews of Nonlinear Dynamics and Complexity, edited by H.G. Schuster (Wiley, 2008), Vol. 1

  4. S. Bornholdt, Science 310, 449 (2005)

    Article  Google Scholar 

  5. J.J. Fox, C.C. Hill, Chaos 11, 809 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. M. Aldana, P. Cluzel, Proc. Nat. Acad. Sci. U.S.A. 100, 8710 (2003)

    Article  ADS  Google Scholar 

  7. M. Aldana, Physica D 185, 45 (2003)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. A.C. e Silva, J.K.L. da Silva, J.F.F. Mendes, Phys. Rev. E 70, 066140 (2004)

    Article  ADS  Google Scholar 

  9. R. Serra, M. Villani, L. Agostini, Physica A 339, 665 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  10. S. Ichi Kinoshita, K. Iguchi, H.S. Yamada, AIP Conference Proceedings 982, 768 (2008)

    Article  ADS  Google Scholar 

  11. B. Drossel, F. Greil, Phys. Rev. E 80, 026102 (2009)

    Article  ADS  Google Scholar 

  12. T. Rohlf, S. Bornholdt, Physica A 310, 245 (2002)

    Article  MATH  ADS  Google Scholar 

  13. A.A. Moreira, L.A.N. Amaral, Phys. Rev. Lett. 94, 218702 (2005)

    Article  ADS  Google Scholar 

  14. A. Szejka, T. Mihaljev, B. Drossel, New J. Phys. 10, 063009 (2008)

    Article  ADS  Google Scholar 

  15. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Nat. Acad. Sci. USA 100, 14796 (2003)

    Article  ADS  Google Scholar 

  16. S. Kauffman, C. Peterson, B. Samuelsson, C. Troein, Proc. Natl. Acad. Sci. 101, 17102 (2004)

    Article  ADS  Google Scholar 

  17. C.H. Waddington, Nature 150, 563 (1942)

    Article  ADS  Google Scholar 

  18. S.E. Harris, B.K. Sawhill, A. Wuensche, S. Kauffman, Complexity 7, 23 (2002)

    Article  Google Scholar 

  19. A.S. Jarrah, B. Raposa, R. Laubenbacher, Physica D 233, 167 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  20. J.T. Butler, T. Sasao, M. Matsuura, IEEE Trans. Comput. 54, 1041 (2005)

    Article  Google Scholar 

  21. E. Bender, J. Butler, IEEE Trans. Comput. C-27, 1180 (1978)

    Google Scholar 

  22. W. Just, I. Shmulevich, J. Konvalina, Physica D 197, 211 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. B. Derrida, Y. Pomeau, Europhys. Lett. 1, 45 (1986)

    Article  ADS  Google Scholar 

  24. B. Luque, R.V. Solé, Physica A 284, 33 (2000)

    Article  ADS  Google Scholar 

  25. I. Shmulevich, S.A. Kauffman, Phys. Rev. Lett. 93, 048701 (2004)

    Article  ADS  Google Scholar 

  26. B. Derrida, G. Weisbuch, J. Phys. 47, 7 (1986)

    Google Scholar 

  27. Greil, Drossel, Eur. Phys. J. B 57, 109 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. P. Peixoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peixoto, T. The phase diagram of random Boolean networks with nested canalizing functions. Eur. Phys. J. B 78, 187–192 (2010). https://doi.org/10.1140/epjb/e2010-10559-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10559-0

Keywords

Navigation