Skip to main content
Log in

Special electronic structures of inverse spinels LiMVO4(M = Ni and Cu): a first-principles study

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The special behaviours of a random distribution of ions in LiNiVO4 and noncollinear magnetic structures in LiCuVO4 are studied based on density functional theory. For LiNiVO4, the random distribution of Li/Ni ions is ascribed to the cubic ground-state structure of the compound. When Li and Ni ions are distributed alternately and homogeneously, an antiferromagnetic structure is found to be the ground state. Both on-site Coulomb interaction and spin-orbit coupling are found to be essential for LiCuVO4 to acquire the correct noncollinear magnetic structure. Semiconductor bands with a gap of 1.4 eV are obtained for the compound with the noncollinear magnetic structure. The reason for the spin on Cu2+ rotating only in the xy plane is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. U. Lüders, M. Bibes, K. Bouzehouane, E. Jacquet, J.-P. Contour, S. Fusil, J.-F. Bobo, J. Fontcuberta, A. Barthélémy, A. Fert, Appl. Phys. Lett. 88, 082505 (2006)

    Article  ADS  Google Scholar 

  2. N. Büttgen, J. Hemberger, V. Fritsch, A. Krimmel, M. Mücksch, H.-A. Krug von Nidda, P. Lunkenheimer, R. Fichtl, V. Tsurkan, A. Loidl, New J. Phys. 6, 191 (2004)

    Article  Google Scholar 

  3. Y.-II Jang, F.C. Chou, Y.-M. Chiang, Appl. Phys. Lett. 74, 2504 (1999)

    Article  ADS  Google Scholar 

  4. K.F. Wang, J.-M. Liu, Z.F. Ren, Adv. Phys. 58, 321 (2009)

    Article  ADS  Google Scholar 

  5. G. Wulfsberg, Inorganic Chemistry (University Science Books, 2000)

  6. R. Kanno, Y. Kawamoto, Y. Takeda, M. Hasegawa, O. Yamamoto, N. Kinomura, J. Solid State Chem. 96, 397 (1992)

    Article  ADS  Google Scholar 

  7. A. Subramania, N. Angayarkanni, S.N. Karthick, T. Vasudevan, Mater. Lett. 60, 3023 (2006)

    Article  Google Scholar 

  8. R.S. Liu, Y.C. Cheng, R. Gundakaram, L.Y. Jang, Mater. Res. Bull. 36, 1479 (2001)

    Article  Google Scholar 

  9. C. González, M. Gaitán, M.L. López, M.L. Veiga, R. Saez-Puche, C. Pico, J. Mater. Sci. 29, 3458 (1994)

    Article  ADS  Google Scholar 

  10. H.J. Xiang, M.-H. Whangbo, Phys. Rev. Lett. 99, 257203 (2007)

    Article  ADS  Google Scholar 

  11. A.S. Moskvin, S.-L. Drechsler, Europhys. Lett. 81, 57004 (2008)

    Article  ADS  Google Scholar 

  12. Ch. Kegler, N. Büttgen, H.-A. Krug von Nidda, A. Loidl, R. Nath, A.V. Mahajan, A.V. Prokofiev, W. Aßmus, Phys. Rev. B 73, 104418 (2006)

    Article  ADS  Google Scholar 

  13. N. Büttgen, H.-A. Krug von Nidda, L.E. Svistov, L.A. Prozorova, Phys. Rev. B 76, 014440 (2007)

    Article  ADS  Google Scholar 

  14. B.J. Gibson, R.K. Kremer, A.V. Prokofiev, W. Aßmus, G.J. McIntyre, Physica B 350, e253 (2004)

  15. R.M. Martin, Electronic Structure: Basic Theory and practical methods (Cambridge University Press, 2004)

  16. G. Kresse, J. Furthmüller, Coumput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  17. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  18. G. Kresse, D. Joubert, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  19. Y. Wang, J.P. Perdew, Phys. Rev. B 44, 13298 (1991)

    Article  ADS  Google Scholar 

  20. W.E. Pickett, S.C. Erwin, E.C. Ethridge, Phys. Rev. B 58, 1201 (1998)

    Article  ADS  Google Scholar 

  21. Z. Yang, Z. Huang, L. Ye, X. Xie, Phys. Rev. B 60, 15674 (1999)

    Article  ADS  Google Scholar 

  22. Ch. Kegler, N. Büttgen, H.-A. Krug von Nidda, A. Krimmel, L. Svistov, B.I. Kochelaev, A. Loidl, A. Prokofiev, W. Aßmus, Europhys. J. B. 22, 321 (2001)

    ADS  Google Scholar 

  23. M. Enderle, C. Mukherjee, B. Fåk, R.K. Kremer, J.-M. Broto, H. Rosner, S.-L. Drechsler, J. Richter, J. Malek, A. Prokofiev, W. Assmus, S. Pujol, J.-L. Raggazzoni, H. Rakoto, M. Rheinstädter, H.M. Ronnow, Europhys. Lett. 70, 237 (2005)

    Article  ADS  Google Scholar 

  24. M.L. Lafontaine, M. Leblanc, G. Ferey, Acta Cryst. C 45, 1205 (1989)

    Article  Google Scholar 

  25. G. Blasse, J. Phys. Chem. Solids 27, 612 (1966)

    Article  ADS  Google Scholar 

  26. H. Takahashi, F. Munakata, M. Yamanaka, Phys. Rev. B 53, 3731 (1996)

    Article  ADS  Google Scholar 

  27. P. Kalyani, S. Sivasubramanian, S.N. Prabhu, K. Ragavendran, N. Kalaiselvi, N.G. Renganathan, S. Madhu, A.S. Raj, S.P. Manoharan, R. Jagannathan, J. Phys. D-Appl. Phys. 38, 990 (2005)

    Article  ADS  Google Scholar 

  28. A.V. Prokofiev, I.G. Vasilyeva, V.N. Ikorskii, V.V. Malakhov, I.P. Asanov, W. Assumus, J. Solid State Chem. 177, 3131 (2004)

    Article  ADS  Google Scholar 

  29. J. Cheng, Z.Q. Yang, Phys. Stat. Sol. (b) 243, 1151 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Q. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, S., Yang, Z. Special electronic structures of inverse spinels LiMVO4(M = Ni and Cu): a first-principles study. Eur. Phys. J. B 78, 299–304 (2010). https://doi.org/10.1140/epjb/e2010-10284-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-10284-8

Keywords

Navigation