Skip to main content
Log in

Photonic properties of metallic-mean quasiperiodic chains

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The light propagation through a stack of two media with different refractive indices, which are aligned according to different quasiperiodic sequences determined by metallic means, is studied using the transfer matrix method. The focus lies on the investigation of the influence of the underlying quasiperiodic sequence as well as the dependence of the transmission on the frequency, the incidence angle of the light wave and different ratios of the refractive indices. In contrast to a periodically aligned stack we find complete transmission for the quasiperiodic systems for a wide range of different refractive indices for small incidence angles. Additional bands of moderate transmission occur for frequencies in the range of the photonic band gaps of the periodic system. Further, for fixed indices of refraction we find a range of almost perfect transmission for angles close to the angle of total reflection, which is caused by the bending of photonic transmission bands towards higher frequencies for increasing incidence angles. Comparing with the results of a periodic stack the quasiperiodicity seems to have only an influence in the region around the midgap frequency of a periodic stack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Shechtman, I. Blech, D. Gratias, J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

    Article  ADS  Google Scholar 

  2. N. Wang, H. Chen, K.H. Kuo, Phys. Rev. Lett. 59, 1010 (1987)

    Article  ADS  Google Scholar 

  3. T. Ishimasa, H.U. Nissen, Y. Fukano, Phys. Rev. Lett. 55, 511 (1985)

    Article  ADS  Google Scholar 

  4. C. Sire, R. Mosseri, J. Phys. France 50, 3447 (1989)

    Article  MathSciNet  Google Scholar 

  5. M. Kohmoto, B. Sutherland, C. Tang, Phys. Rev. B 35, 1020 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  6. G. Gumbs, M.K. Ali, J. Phys. A 22, 951 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  7. A. Sütő, J. Stat. Phys. 56, 525 (1989)

    Article  ADS  Google Scholar 

  8. M. Baake, U. Grimm, R.J. Baxter, Int. J. Mod. Phys. B 8, 3579 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  9. E.Y. Vedmedenko, H.P. Oepen, J. Kirschner, Phys. Rev. Lett. 90, 1372031 (2003)

    Article  Google Scholar 

  10. B. Chen, C. Gong, Z. Phys. B: Condens. Matter 69, 103 (1987)

    Article  ADS  Google Scholar 

  11. F. Nori, J.P. Rodriguez, Phys. Rev. B 34, 2207 (1986)

    Article  ADS  Google Scholar 

  12. R. Ilan, E. Liberty, S. Even-Dar Mandel, R. Lifshitz, Ferroelectrics 305, 15 (2004)

    Article  Google Scholar 

  13. R. McGrath, U. Grimm, R.D. Diehl, Phys. World 17, 23 (2004)

    Google Scholar 

  14. W. Steurer, D. Sutter Widmer, J. Phys. D: Appl. Phys. 40, R229 (2007)

    Article  ADS  Google Scholar 

  15. A. Bahabad, R. Lifshitz, N. Voloch, A. Arie, Philos. Mag. 88, 2285 (2008)

    Article  ADS  Google Scholar 

  16. E. Maciá, Phys. Rev. B 63, 205421 (2001)

    Article  ADS  Google Scholar 

  17. J. Hendrickson, B.C. Richards, J. Sweet, G. Khitrova, A.N. Poddubny, E.L. Ivchenko, M. Wegener, H.M. Gibbs, Opt. Express 16, 15382 (2008)

    Article  ADS  Google Scholar 

  18. M. Kohmoto, B. Sutherland, K. Iguchi, Phys. Rev. Lett. 58, 2436 (1987)

    Article  ADS  Google Scholar 

  19. K. Esaki, M. Sato, M. Kohmoto, Phys. Rev. E 79, 056226 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  20. H. Yin, X. Yang, Q. Guo, S. Lan, J. Phys.: Condens. Matter 19, 356221 (2007)

    Article  Google Scholar 

  21. M.S. Vasconcelos, E.L. Albuquerque, A.M. Mariz, J. Phys.: Condens. Matter 10, 5839 (1998)

    Article  ADS  Google Scholar 

  22. J. Li, D. Zhao, Z. Liu, Phys. Lett. A 332, 461 (2004)

    Article  MATH  ADS  Google Scholar 

  23. F.F. de Medeiros, E.L. Albuquerque, M.S. Vasconcelos, J. Phys.: Condens. Matter 18, 8737 (2006)

    Article  ADS  Google Scholar 

  24. W. Gellermann, M. Kohmoto, B. Sutherland, P.C. Taylor, Phys. Rev. Lett. 72, 633 (1994)

    Article  ADS  Google Scholar 

  25. R. Nava, J. Taguena-Martinez, J.A. del Rio, G.G. Naumis, J. Phys.: Condens. Matter 21, 155901 (2009)

    Article  ADS  Google Scholar 

  26. S. Thiem, M. Schreiber, U. Grimm, Phys. Rev. B 80, 2142031 (2009)

    Article  Google Scholar 

  27. V.W. de Spinadel, Nonlinear Analysis 36, 721 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. E. Hecht, A. Zajac, Optics, 7th edn. (Addison-Wesley, Boston, 1982)

  29. K. Honda, Y. Otobe, J. Phys. A 39, L315 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  30. K. Kono, S. Nakada, Y. Narahara, Y. Ootuka, J. Phys. Soc. Jpn 60, 368 (1991)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Thiem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thiem, S., Schreiber, M. Photonic properties of metallic-mean quasiperiodic chains. Eur. Phys. J. B 76, 339–345 (2010). https://doi.org/10.1140/epjb/e2010-00226-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00226-y

Keywords

Navigation