Skip to main content
Log in

Finite size scaling in BTW like sandpile models

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Lattice statistical models of equilibrium critical phenomena generally obey finite size scaling (FSS) ansatz. However, the critical behavior of the prototypical BTW sandpile model demonstrating self-organized criticality at out of equilibrium is described by a peculiar multiscaling behaviour. FSS hypothesis is verified here on two versions (RSM1 and RSM2) of a rotational sandpile model (RSM) with broken mirror symmetry. In these models, sand grains flow only in the forward direction and in a specific rotational direction from an active site after toppling. The toppling rules are such that RSM1 will have less randomness whereas RSM2 will have more randomness with respect to RSM. RSM1 is expected to be more closer to BTW whereas RSM2 is expected to be more closer to Manna’s stochastic model. Both RSM1 and RSM2 are found to belong to the same universality class of RSM. The scaling functions of RSM1 and RSM2 are also found to obey usual FSS hypothesis at out of equilibrium instead of multiscaling as in BTW.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, New York, 1971)

  2. J.L. Cardy, Finite-size Scaling, edited by J.L. Cardy (North Holland, Amsterdam, 1988)

  3. P. Bak, How Nature Works: the Science of Self-Organized Criticality (Copernicus, New York, 1996)

  4. H.J. Jensen, Self-Organized Criticality (Cambridge University Press, Cambridge, 1998)

  5. K. Christensen, N.R. Moloney, Complexity and Criticality (Imperial College Press, London, 2005)

  6. K. Chen, P. Bak, S.P. Obukhov, Phys. Rev. A 43, 625 (1990)

    Article  ADS  Google Scholar 

  7. H. Takayasu, H. Inaoka, Phys. Rev. Lett. 68, 966 (1992)

    Article  ADS  Google Scholar 

  8. P. Bak, K. Snappen, Phys. Rev. Lett. 71, 4083 (1993)

    Article  ADS  Google Scholar 

  9. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  10. C. Tebaldi, M. De Menech, A.L. Stella, Phys. Rev. Lett. 83, 3952 (1999)

    Article  ADS  Google Scholar 

  11. S. Lübeck, Phys. Rev. E 61, 204 (2000)

    Article  ADS  Google Scholar 

  12. Spiral self-avoiding walk: H.J.W. Blöte, H.J. Hilhorst, J. Phys. A 17, L111 (1984)

    Article  ADS  Google Scholar 

  13. Spiral lattice animal: T.C. Li, Z.C. Zhou, J. Phys. A 18, 67 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  14. Spiral percolation: S.B. Santra, I. Bose, J. Phys. A 25, 1105 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  15. S.B. Santra, S.R. Chanu, D. Deb, Phys. Rev. E 75, 041122 (2007)

    Article  ADS  Google Scholar 

  16. S.S. Manna, J. Phys. A: Math. Gen. 24, L363(1991)

  17. S.S. Manna, Physica A 179, 249 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  18. P. Grassberger, S.S. Manna, J. Phys. (France) 51, 1077 (1990)

    Google Scholar 

  19. S.S. Manna, J. Stat. Phys. 63, 653 (1991)

    Article  MathSciNet  Google Scholar 

  20. D. Dhar, R. Ramaswamy, Phys. Rev. Lett. 63, 1659 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  21. A. Ben-Hur, O. Biham, Phys. Rev. E 53, R1317 (1996)

    Article  ADS  Google Scholar 

  22. S. Lübeck, K.D. Usadel, Phys. Rev. E 55, 4095 (1997)

    Article  ADS  Google Scholar 

  23. S.S. Manna, A.L. Stella, Physica A 316, 135 (2002)

    Article  MATH  ADS  Google Scholar 

  24. S.B. Santra, W.A. Seitz, Int. J. Mod. Phys. C 11, 1357 (2000)

    Article  ADS  Google Scholar 

  25. A. Chessa, H.E. Stanley, A. Vespignani, S. Zapperi, Phys. Rev. E 59, R12 (1999)

    Article  ADS  Google Scholar 

  26. Toppling waves are defined as the number of toppling during the propagation of an avalanche starting from a critical site O without toppling O more than once. Each toppling of O creates a new toppling wave

  27. D.V. Ktitarev, S. Lübeck, P. Grassberger, V.B. Priezzhev, Phys. Rev. E 61, 81 (2000)

    Article  ADS  Google Scholar 

  28. M. De Menech, A.L. Stella, Phys. Rev. E 62, R4528 (2000)

    Article  ADS  Google Scholar 

  29. M. Paczuski, S. Boettcher, Phys. Rev. E 56, R3745 (1997)

    Article  ADS  Google Scholar 

  30. R. Karmakar, S.S. Manna, A.L. Stella, Phys. Rev. Lett. 94, 088002 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. B. Santra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahmed, J., Santra, S. Finite size scaling in BTW like sandpile models. Eur. Phys. J. B 76, 13–20 (2010). https://doi.org/10.1140/epjb/e2010-00198-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00198-x

Keywords

Navigation