Skip to main content

Advertisement

Log in

Hydrostatic pressure and electric field effects on the normalized binding energy in asymmetrical quantum wells

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have investigated the simultaneous effects of the hydrostatic pressure and electric field on the ground subband level and on normalized binding energy of an on-center donor in asymmetrical GaAs/AlGaAs quantum wells within the effective-mass approximation and a variational approach. We found that the well size at which the impurity energy changes from positive to negative value (turning point) strongly depends on the asymmetry and hydrostatic pressure. As a key result, we suggest that the study of the normalized binding energy for various values of the electric field in direct and inverse polarization regimes can be used to feel the quantum well asymmetry and to unambiguously find out the effective pressure acting on a given heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.A. Tuchman, S. Kim, Z. Sui, I.P. Herman, Phys. Rev. B 46, 13371 (1992)

    Article  ADS  Google Scholar 

  2. S.H. Wei, A. Zunger, Phys. Rev. B 60, 5404 (1999)

    Article  ADS  Google Scholar 

  3. J.M. Wagner, F. Bechstedt, Phys. Rev. B 62, 4526 (2000)

    Article  ADS  Google Scholar 

  4. A. Debernardi, C. Ulrich, M. Cardona, K. Syassen, Phys. Stat. Sol. B 223, 213 (2001)

    Article  ADS  Google Scholar 

  5. G.J. Zhao, X.X. Liang, S.L. Ban, Phys. Lett. A 319, 191 (2003)

    Article  ADS  Google Scholar 

  6. N. Raigoza, A.L. Morales, A. Montes, N. Porras-Montenegro, C.A. Duque, Phys. Rev. B 69, 045323 (2004)

    Article  ADS  Google Scholar 

  7. O.O. Diniz Neto, Fanyao Qu, Superlatt. Microstr. 35, 1 (2004)

    Article  ADS  Google Scholar 

  8. M.P. Touse, G. Karunasiri, K.R. Lantz, H. Li, T. Mei, Appl. Phys. Lett. 86, 093501 (2005)

    Article  ADS  Google Scholar 

  9. A.J. Peter, K. Navaneethakrishnan, Superlatt. Microstr. 43, 63 (2008)

    Article  ADS  Google Scholar 

  10. E. Kasapoglu, H. Sari, I. Sokmen, Physica B 390, 216 (2007)

    Article  ADS  Google Scholar 

  11. M.A. Belkin, F. Capasso, F. Xie, A. Balyanin, M. Fischer, A. Whitmann, J. Faist, Appl. Phys. Lett. 92, 201101 (2008)

    Article  ADS  Google Scholar 

  12. F.M.S. Lima, M.A. Amato, O.A.C. Nunes, A.L.A. Fonseca, B.G. Enders, E.F. da Silva, Jr., J. Appl. Phys. 105, 123111 (2009)

    Article  ADS  Google Scholar 

  13. E. Niculescu, L.M. Burileanu, Eur. Phys. J. B (in press)

  14. N. Eseanu, E.C. Niculescu, L.M. Burileanu, Physica E 41, 1386 (2009)

    Article  ADS  Google Scholar 

  15. V.K. Kononenko, A.A. Afonenko, I.S. Manak, S.V. Nalivko, Optoelectronics Rev. 8, 241 (2000)

    Google Scholar 

  16. H.O. Oyoko, N. Porras-Montenegro, S.Y. Lopez, C.A. Duque, Phys. Status Solidi C 4, 298 (2007)

    Article  ADS  Google Scholar 

  17. M. Hostut, D. Kartal, Y. Ergun, I. Sokmen, Semicond. Sci. Technol. 22, 422 (2007)

    Article  ADS  Google Scholar 

  18. M. Hostut, M. Alyoruk, Y. Ergun, I. Sokmen, Appl. Phys. A 98, 269 (2010)

    Article  ADS  Google Scholar 

  19. I. Karabulut, U. Atav, H. Safak, M. Tomak, Eur. Phys. J. B 55, 283 (2007)

    Article  ADS  Google Scholar 

  20. N. Eseanu, E.C. Niculescu, U. P. B. Sci. Bull. Series A 72, 26 (2010)

    Google Scholar 

  21. C. Dane, H. Akbas, S. Minez, A. Guleroglu, Physica E 41, 278 (2008)

    Article  ADS  Google Scholar 

  22. D.S. Chuu, C.M. Hsiao, W.N. Mei, Phys. Rev. B 46, 3898 (1992)

    Article  ADS  Google Scholar 

  23. D.S. Chuu, Y.N. Chen, Y.K. Lin, Physica B 291, 228 (2000)

    Article  ADS  Google Scholar 

  24. D.E. Aspnes, Phys. Rev. B 14, 5331 (1976)

    Article  ADS  Google Scholar 

  25. B. Welber, M. Cardona, C.K. Kim, S. Rodriquez, Phys. Rev. B 12, 5729 (1975)

    Article  ADS  Google Scholar 

  26. H. Ehrenrich, J. Appl. Phys. 32, 2155 (1961)

    Article  ADS  Google Scholar 

  27. S. Adachi, J. Appl. Phys. 58, R1 (1985)

    Article  ADS  Google Scholar 

  28. J.M. Mercy, C. Bousquet, J.L. Robert, A. Raymond, G. Gregoris, J. Beerens, J.C. Portal, P.M. Frijlink, P. Delescluse, J. Chevrier, N.T. Linh, Surf. Sci. 142, 298 (1984)

    Article  ADS  Google Scholar 

  29. G.A. Samara, Phys. Rev. B 27, 3494 (1983)

    Article  ADS  Google Scholar 

  30. R.F. Kopf, M.H. Herman, M. Lamont Schnoes, A.P. Perley, G. Livescu, M. Ohring, J. Appl. Phys. 71, 5004 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Eseanu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niculescu, E., Eseanu, N. Hydrostatic pressure and electric field effects on the normalized binding energy in asymmetrical quantum wells. Eur. Phys. J. B 75, 247–251 (2010). https://doi.org/10.1140/epjb/e2010-00149-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00149-7

Keywords

Navigation