Skip to main content
Log in

Effect of gap opening on the quasiparticle properties of doped graphene sheets

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present numerical calculations of the effect of gap opening on the quasiparticle properties of a doped graphene sheet within G0W-RPA approximation. We present results of the renormalized Fermi velocity suppression and the renormalization constant over a broad range of the energy gap values. We find that the renormalized velocity is density independent at large density values which is in agreement with recent experimental observations. We also show that the inelastic quasiparticle lifetime decreases by increasing the gap value. Finally, we show that the inelastic mean free path reduces by increasing the gap values but in the range of the typical gap values it is large enough and transport remains in the semi-ballistic regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K.S. Novoselov et al., Science 306, 666 (2004)

    Article  ADS  Google Scholar 

  2. A.H. Castro Neto et al., Rev. Mod. Phys. 81, 109 (2009)

    Article  ADS  Google Scholar 

  3. A.A. Balandin et al., Nano Lett. 8, 902 (2008)

    Article  ADS  Google Scholar 

  4. S.V. Morozov et al., Phys. Rev. Lett. 100, 016602 (2008)

    Article  ADS  Google Scholar 

  5. K. Eng, R.N. McFarland, B.E. Kane, Appl. Phys. Lett. 87, 052106 (2005)

    Article  ADS  Google Scholar 

  6. T.O. Wehling et al., Nano Lett. 8, 173 (2008)

    Article  ADS  Google Scholar 

  7. I. Gierz et al., Nano Lett. 8, 4603 (2008)

    Article  ADS  Google Scholar 

  8. Y.W. Son, M.L. Cohen, S.G. Louise, Phys. Rev. Lett. 97, 216803 (2006)

    Article  ADS  Google Scholar 

  9. M.Y. Han et al., Phys. Rev. Lett. 98, 206805 (2007)

    Article  ADS  Google Scholar 

  10. Y.-W. Son, M.L. Cohen, S.G. Louie, Nature 444, 347 (2006)

    Article  ADS  Google Scholar 

  11. Xue-Feng Wang, Tapash Chakraborty, Phys. Rev. B 75, 033408 (2007)

    Article  ADS  Google Scholar 

  12. G.W. Semenov, Phys. Rev. Lett. 53, 2449 (1984)

    Article  ADS  Google Scholar 

  13. Chang-Yu Hou, Claudio Chamon, Christopher Mudry, Phys. Rev. Lett. 98, 186809 (2007)

    Article  ADS  Google Scholar 

  14. S.Y. Zhou et al., Nature Mat. 6, 770 (2007)

    Article  ADS  Google Scholar 

  15. S.Y. Zhou et al., Phys. Rev. Lett. 101, 086402 (2008)

    Article  ADS  Google Scholar 

  16. D.A. Siegel et al., Appl. Phys. Lett. 93, 243119 (2008)

    Article  ADS  Google Scholar 

  17. S.Y. Zhou et al., Physica E 40, 2642 (2008)

    Article  ADS  Google Scholar 

  18. S. Kim et al., Phys. Rev. Lett. 100, 176802 (2008)

    Article  ADS  Google Scholar 

  19. G. Li, A. Luican, E.Y. Andrei, arXiv:0803.4016 (2008)

  20. A. Grüneis, D.V. Vyalikh, Phys. Rev. B 77, 193401 (2008)

    Article  ADS  Google Scholar 

  21. Gianluca Giovannetti et al., Phys. Rev. B 76, 073103 (2007)

    Article  ADS  Google Scholar 

  22. R.M. Ribeiro et al., Phys. Rev. B 78, 075442 (2008)

    Article  ADS  Google Scholar 

  23. I. Zanella et al., Phys. Rev. B 77, 073404 (2008)

    Article  ADS  Google Scholar 

  24. J.M. Dawlaty et al., Appl. Phys. Lett. 92, 042116 (2008)

    Article  ADS  Google Scholar 

  25. J.R. Williams, L. DiCarlo, C.M. Marcus, Science 317, 638 (2007)

    Article  ADS  Google Scholar 

  26. G. Gu, S. Nie et al., Appl. Phys. Lett. 90, 253507 (2007)

    Article  ADS  Google Scholar 

  27. G.F. Giuliani, G. Vignale, Quantum Theory of The Electron Liquid (Cambridge University Press, Cambridge, UK, 2005)

    Book  Google Scholar 

  28. Marco Polini et al., Phys. Rev. B 77, R081411 (2008)

    Article  ADS  Google Scholar 

  29. Z.Q. Li et al., Nature Phys. 4, 532 (2008)

    Article  Google Scholar 

  30. P.R. Wallace, Phys. Rev. 71, 622 (1947)

    Article  MATH  ADS  Google Scholar 

  31. M. Polini et al., Solid State Commun. 143, 58 (2007)

    Article  ADS  Google Scholar 

  32. A. Qaiumzadeh, R. Asgari, Phys. Rev. B 79, 075414 (2009)

    Article  ADS  Google Scholar 

  33. A. Qaiumzadeh, R. Asgari, New J. Phys. 11, 095023 (2009)

    Article  ADS  Google Scholar 

  34. P.K. Pyatkovskiy, J. Phys.: Condens. Matter 21, 025506 (2009)

    Article  ADS  Google Scholar 

  35. R. Asgari et al., Phys. Rev. B 71, 045323 (2005)

    Article  ADS  Google Scholar 

  36. R. Asgari, B. Tanatar, Phys. Rev. B 74, 075301 (2006)

    Article  ADS  Google Scholar 

  37. Y. Barlas et al., Phys. Rev. Lett. 98, 236601 (2007)

    Article  ADS  Google Scholar 

  38. A. Qaiumzadeh, N. Arabchi, R. Asgari, Solid State Commun. 147, 172 (2008)

    Article  ADS  Google Scholar 

  39. G.F. Giuliani, J.J. Quinn, Phys. Rev. B 26, 4421 (1982)

    Article  ADS  Google Scholar 

  40. E.H. Hwang, BenYu-Kaung Hu, S. Das Sarma, Phys. Rev. B 76, 115434 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Asgari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qaiumzadeh, A., Joibari, F. & Asgari, R. Effect of gap opening on the quasiparticle properties of doped graphene sheets. Eur. Phys. J. B 74, 479–485 (2010). https://doi.org/10.1140/epjb/e2010-00125-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00125-3

Keywords

Navigation