Skip to main content
Log in

Exciton distribution on single-walled carbon nanotube

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In this paper we calculate the binding energy of an exciton using the tight-binding model and discuss the exciton distribution in detail. We analytically explain the dependence of the distribution direction of exciton on the chiral angle, and the distribution localization along the tube axis and oscillating along the tube circumference. The size of exciton is estimated to be slightly larger than the diameter of the nanotube and it shows two family patterns versus the inverse of tube diameter as similar as in the exciton binding energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998)

    Google Scholar 

  2. M.J. O’Connell, S.M. Bachilo, X.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science 297, 593 (2002)

    Article  ADS  Google Scholar 

  3. S.M. Bachilo, M.S. Strano, C. Kittrel, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002)

    Article  ADS  Google Scholar 

  4. A. Hagen, T. Hertel, Nano. Lett. 3, 383 (2003)

    Article  ADS  Google Scholar 

  5. J. Lefebvre, Y. Homma, P. Finnie, Phys. Rev. Lett. 90, 217401 (2003)

    Article  ADS  Google Scholar 

  6. S. Lebedkin, F. Hennrich, T. Skipa, M.M. Kappes, J. Phys. Chem. B 107, 1949 (2003)

    Article  Google Scholar 

  7. F. Wang, D.J. Cho, B. Kessler, J. Deslippe, P.J. Schuck, S.G. Louie, A. Zettl, T.F. Heinz, Y.R. Shen, Phys. Rev. Lett. 99, 227401 (2007)

    Article  ADS  Google Scholar 

  8. H. Zeng, H. Zhao, F.C. Zhang, X. Cui, Phys. Rev. Lett. 102, 136406 (2009)

    Article  ADS  Google Scholar 

  9. F. Wang, G. Dukovic, L.E. Brus, T.F. Heinz, Science 308, 838 (2005)

    Article  ADS  Google Scholar 

  10. J. Maultzsch, R. Pomraenke, S. Reich, E. Chang, D. Prezzi, A. Ruini, E. Molinari, M.S. Strano, C. Thomsen, C. Lienau, Phys. Rev. B 72, R241402 (2005)

    Article  ADS  Google Scholar 

  11. G. Dukovic, F. Wang, D.H. Song, M.Y. Sfeir, T.F. Heinz, L.E. Brus, Nano. Lett. 5, 2314 (2005)

    Article  ADS  Google Scholar 

  12. C.D. Spataru, S. Ismail-Beigi, L.X. Benedict, S.G. Louie, Phys. Rev. Lett. 92, 077402 (2004)

    Article  ADS  Google Scholar 

  13. E. Chang, G. Bussi, A. Ruini, E. Molinari, Phys. Rev. Lett. 92, 196401 (2004)

    Article  ADS  Google Scholar 

  14. T. Ando, J. Phys. Soc. Jpn 66, 1066 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  15. T.G. Pedersen, Phys. Rev. B 67, 073401 (2003)

    Article  ADS  Google Scholar 

  16. C.L. Kane, E.J. Mele, Phys. Rev. Lett. 90, 207401 (2003)

    Article  ADS  Google Scholar 

  17. V. Perebeinos, J. Tersoff, P. Avouris, Phys. Rev. Lett. 92, 257402 (2004)

    Article  ADS  Google Scholar 

  18. H. Zhao, S. Mazumdar, Phys. Rev. Lett. 93, 157402 (2004)

    Article  ADS  Google Scholar 

  19. R.B. Capaz, C.D. Spataru, S. Ismail-Beigi, S.G. Louie, Phys. Rev. B 74, R121401 (2006)

    Article  ADS  Google Scholar 

  20. Z.D. Wang, H.B. Zhao, S. Mazumdar, Phys. Rev. B 74, 195406 (2006)

    Article  ADS  Google Scholar 

  21. J. Jiang, R. Saito, G.G. Samsonidze, A. Jorio, S.G. Chou, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 75, 035407 (2007)

    Article  ADS  Google Scholar 

  22. G. Yu, Y. Jia, J. Dong, J. Phys. Condens. Matt. 19, 266222 (2007)

    Article  ADS  Google Scholar 

  23. R. Pariser, R.G. Parr, J. Chem. Phys. 21, 466 (1953)

    Article  ADS  Google Scholar 

  24. R. Pariser, R.G. Parr, J. Chem. Phys. 21, 767 (1953)

    Article  ADS  Google Scholar 

  25. J.A. Pople, Trans, Faraday Soc. 49, 1375 (1953)

    Article  Google Scholar 

  26. K. Ohno, Theor. Chim. Acta 2, 219 (1964)

    Article  Google Scholar 

  27. R. Saito, K. Sato, Y. Oyama, J. Jiang, G.G. Samsonidze, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 72, 153413 (2005)

    Article  ADS  Google Scholar 

  28. R.S. Knox, Solid State Physics (Academic, New York, 1963), Suppl. 5

    Google Scholar 

  29. S. Abe, J. Yu, W.P. Su, Phys. Rev. B 45, 8264 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lü, Y., Liu, H. & Gu, B. Exciton distribution on single-walled carbon nanotube. Eur. Phys. J. B 74, 499–506 (2010). https://doi.org/10.1140/epjb/e2010-00098-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00098-1

Keywords

Navigation