Skip to main content
Log in

Elementary considerations on the local symmetry in optoelectronic materials and their phase change behavior

How the competition of ions in their attempt to increase local symmetry and electrons in their attempt to reduce it can lead to phase change behavior

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Crystalline structures of elemental solids can be rationalized in terms of the competition between ions and electrons: ions try to increase local symmetry and thus packing fraction, while electrons want to reduce it. If the latter win, layered structures, network, or molecular solids form and the opening of an electronic gap is favoured. In this work, it will be discussed how this competition can affect the thermodynamic behavior of phase change materials (PCMs), in particular that of Ge-Sb-Te alloys: their technologically relevant metastable crystalline structures can be derived from (hypothetical, metallic) simple cubic crystals near half-filling via a symmetry breaking, such as a Peierls distortion in Sb-rich PCMs or ordering of chemical species onto sublattices on the GeTe-Sb2Te3 pseudo-binary line, leading to the formation of σ-bonded networks. Local symmetry and density become even smaller and the gap opens up even more in the glass, for example, when the group IV element germanium undergoes a coordination change from (distorted) octahedral in the crystal to tetrahedral. This coordination change leaves the σ-bonded network intact, as will be demonstrated by analysis of first-principle simulations. Based on local symmetry arguments, simple rules for the number of electron holes and/or vacancies in metastable crystalline structure of PCMs can be derived and the response of Ge-Sb-Te alloys to pressure be predicted: crystalline alloys will amorphise under pressure when there are more Te than Ge atoms and increase their conductivity. Conversely, disordered alloys will crystallize if the number of Ge atoms exceeds that of Te. The possibility to switch the latter PCMs reversibly with pressure will be discussed. Lastly, unusual relaxation dynamics of PCMs are identified from first-principle calculations: when a solid is streched to its amorphisation point, the ionic energy (which is minimized in the crystal) increases with time as opposed to the dominating electronic energy. At the same time, coordination statistics become increasingly distinct with age from those in the crystal, i.e., the glass initially relaxes away from the crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S.R. Ovshinsky, Phys. Rev. Lett. 21, 1450 (1968)

    Google Scholar 

  • N. Yamada, E. Ohno, K. Nishiushi, N. Akahira, M. Takao, J. Appl. Phys. 69, 2849 (1991)

    Google Scholar 

  • A.L. Lacaita, Solid-State Electron. 50, 24 (2006)

  • M.H.R. Lankhorst, B.W.S.M.M. Ketelaars, R.A.M. Wolters, Nature Mater. 4, 347 (2005)

    Google Scholar 

  • A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankudinov, J. Tominaga, T. Uruga, Nature Materials 3, 703 (2004)

    Google Scholar 

  • W. Wełnic, A. Pamungkas, R. Detemple, C. Steimer, S. Blügel, M. Wuttig, Nature Materials 5, 56 (2006)

    Google Scholar 

  • S. Caravati, M. Bernasconi, T.D. Kühne, M. Krack, M. Parrinello, Appl. Phys. Lett. 91, 171906 (2007)

    Google Scholar 

  • W. Welnic, M. Wuttig, Mater. Today 11, 20 (2008)

  • N. Yamada, MRS Bull. 21, 48 (1996)

    Google Scholar 

  • J. Stuke, G. Zimmerer, Phys. Status Solidi B 49, 513 (1972)

    Google Scholar 

  • N. Oshima, J. Appl. Phys. 79, 8357 (1996)

    Google Scholar 

  • Y. Kageyama, H. Iwasaki, M. Harigaya, Y. Ide, Jpn J. Appl. Phys. 35, 500 (1996)

    Google Scholar 

  • W.K. Njoroge, M. Wuttig, J. Appl. Phys. 90, 3816 (2001)

    Google Scholar 

  • C.S. Barrett, P. Cucka, K. Haefner, Acta Crystallographica 16, 451 (1963)

  • N. Yamada, T. Matsunaga, J. Appl. Phys. 88, 7020 (2000)

    Google Scholar 

  • D.P. Gosain, T. Shimizu, M. Ohmura, M. Suzuki, T. Bando, S. Okano, J. Mat. Sci. 26, 3271 (1991)

    Google Scholar 

  • M.J. Kang, S.Y. Choi, D. Wamwangi, K. Wang, C. Steimer, M. Wuttig, J. Appl. Phys. 98, 014904 (2005)

    Google Scholar 

  • S.O. Ryu, S.M. Yoon, N.Y. Lee, IEEE Electron Device Lett. 27, 445 (2006)

    Google Scholar 

  • K. Shportko, S. Kremers, M. Woda et al., Nature Mater. 7, 653 (2008)

  • D. Lencer, M. Salinga, B. Grabowski et al., Nature Mater. 7, 972 (2008)

  • M. Wuttig, Phys. Status Solidi B 246, 1820 (2009)

    Google Scholar 

  • G. Lucovsky, R.M. White, Phys. Rev. B 8, 660 (1973)

    Google Scholar 

  • B. Stegemann, C. Ritter, B. Kaiser, K. Rademann, J. Phys. Chem. B 108, 14292 (2004)

    Google Scholar 

  • D. Dietzel, C. Ritter, T. Monninghoff et al., Phys. Rev. Lett. 101, 125505 (2008)

    Google Scholar 

  • M.H. Muser, Europhys. Lett. 66, 97 (2004)

  • R.E. Peierls, Quantum Theory of Solids (Oxford University Press, Oxford, 1955)

  • M.P. Marder, Condensed Matter Physics (John Wiley & Sons, New York, 2000)

  • P. Söderling, O. Eriksson, B. Johansson, J.M. Wills, A.M. Boring, Nature 374, 524 (1995)

    Google Scholar 

  • D. Shakhvorostov, R.A. Nistor, L. Krusin-Elbaum, G.J. Martyna, D.M. Newns, B.G. Elmegreen, X. Liu, Z.E. Hughes, S. Paul, C. Cabral Jr, S. Raoux, D.B. Shrekenhamer, D.N. Basov, Y. Song, M.H. Müser, Proc. Natl. Acad. Sci. 106, 10907 (2009)

    Google Scholar 

  • J.-P. Gaspard, A. Pellegatti, F. Marinelli, C. Bichara, Phil. Mag. B 77, 727 (1988)

    Google Scholar 

  • T. Matsunaga, R. Kojima, N. Yamada, K. Kifune, Y. Kubota, Y. Tabata, M. Takata, Inorg. Chem. 45, 2235 (2006)

    Google Scholar 

  • J.K. Burdett, T.M. McLarnan, J. Chem. Phys. 75, 5764 (1981)

    Google Scholar 

  • J.K. Burdett, S. Lee, J. Am. Chem. Soc. 105, 1079 (1983)

    Google Scholar 

  • J.A. Venables, C.A. English, Acta Crystallogr. B 30, 929 (1974)

    Google Scholar 

  • In the Pa3 phase, N2 molecules occupy face center cubic lattice positions. Each director of one of the four molecules in the unit cell points parallel to its own space diagonal of the cubic elementary cell

  • W.H. Beamer, C.R. Maxwell, J. Chem. Phys. 14, 569 1946

    Google Scholar 

  • H. Iwasaki, T. Kikegawa, Acta Crystallogr. B 53, 353 (1997)

    Google Scholar 

  • S.P. Rudin, A.Y. Liu, J.K. Freericks, A. Quandt, Phys. Rev. B 63, 224107 (2001)

  • A. Decker, G.A. Landrum, R. Dronskowski, Z. Anorg. Allg. Chem. 628, 295 (2002)

    Google Scholar 

  • M. Wuttig, D. Lusebrink, D. Wamwangi, W. Welnic, M. Gilleßen, R. Dronskowski, Nature Mater. 6, 122 (2007)

    Google Scholar 

  • T.A. Anderson, H.B. Krause, Acta Cryst. B 30, 1307 (1973)

    Google Scholar 

  • E. Prodan, W. Kohn, Proc. Natl. Acad. Sci. 102, 11635 (2005)

    Google Scholar 

  • A.H. Edwards, A.C. Pineda, P.A. Schultz et al., Phys. Rev. B 73, 045210 (2006)

    Google Scholar 

  • S. Caravati, M. Bernasconi, T.D. Kühne et al., J. Phys.: Condens. Matter 21, 255501 (2009)

    Google Scholar 

  • A. Ormeci, H. Rosner, Z. Kristallogr 219, 370 (2004)

    Google Scholar 

  • S. Baroni, A. Dal Corso, S. de Gironcoli, P. Giannozzi, C. Cavazzoni, G. Ballabio, S. Scandolo, G. Chiarotti, P. Focher, A. Pasquarello, K. Laasonen, A. Trave, R. Car, N. Marzari, A. Kokalj, PWSCF: Plane Wave Self Consistent Field ab initio package, http://www.pwscf.org retrieved on 2009.01.04

  • X. Gonze, J.-M. Beuken, R. Caracas et al., Science 25, 478 (2002)

  • X. Gonze, G.-M. Rignanese, M. Verstraete et al., Zeit. Kristallogr. 220, 558 (2005)

    Google Scholar 

  • A.D. Becke, J. Chem. Phys. 98, 5648 (1993)

    Google Scholar 

  • C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)

    Google Scholar 

  • N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)

  • J. Akola, R.O. Jones, Phys. Rev. B 76, 235201 (2007)

    Google Scholar 

  • R.A. Nistor, Simulation of charge transfer and orbital rehybridization, Ph.D. thesis, University of Western Ontario, London, Ontario (2009)

  • J.Y. Raty, V. Godlevsky, Ph. Ghosez, C. Bichara, J.P. Gaspard, J.R. Chelikowsky, Phys. Rev. Lett. 85, 1950 (2000)

  • A.V. Kolobov, J. Haines, A. Pradel, M. Ribes, P. Fons, J. Tominaga, Y. Katayama, T. Hammouda, T. Uruga, Phys. Rev. Lett. 97, 035701 (2006)

    Google Scholar 

  • S. Caravati, M. Bernasconi, T.D. Kühne et al., Phys. Rev. Lett. 102, 205502 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. H. Müser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müser, M. Elementary considerations on the local symmetry in optoelectronic materials and their phase change behavior. Eur. Phys. J. B 74, 291–302 (2010). https://doi.org/10.1140/epjb/e2010-00072-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00072-y

Keywords

Navigation