Skip to main content
Log in

Magnetism-induced ballistic conductance changes in palladium nanocontacts

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present first-principles calculations of the effects of magnetism on the ballistic conductance of a model Pd nanocontact, made of a short Pd monatomic stretched chain placed between two Pd leads, simulated by semi-infinite (100) slabs. The stretching makes the suspended Pd chain generally ferromagnetic. The spin-resolved ballistic conductance, calculated according to the Landauer-Büttiker formula is found to be 0.85G0 for the spin-up and 1.15G0 for the spin-down electrons (G0 = 2e2/h is the conductance quantum). The total conductance ~2G0 is lower, but still relatively close to that of the nonmagnetic Pd nanocontact with the same geometry, calculated to be 2.3G0. To illustrate how magnetism and conductance depend on structural details, we change the three atom chain docking from the top to a hollow surface site, where at the same stress the Pd contact is nonmagnetic and the conductance decreases to 1.8G0. Overall we find these calculated ballistic conductance values of very similar magnitude to the first histogram peak in the experimental data obtained for Pd at low temperature in mechanically controllable break junctions. We conclude that the 15% conductance changes caused by the onset or the demise of local magnetism, similar in magnitude to geometry-related conductance changes, are probably too small to be used as a diagnostic for the presence or absence of nanocontact magnetism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Agrait et al., Phys. Rep. 377, 81 (2003)

    Article  ADS  Google Scholar 

  2. S. Csonka, A. Halbritter, G. Mihaly, O.I. Shklyarevshii, S. Speller, H. Van Kempen, Phys. Rev. Lett. 93, 016802 (2004)

    Article  ADS  Google Scholar 

  3. T. Matsuda, T. Kizuka, Jpn J. Appl. Phys. 46, 4370 (2007)

    Article  ADS  Google Scholar 

  4. V. Rodrigues, J. Bettini, P.C. Silva, D. Ugarte, Phys. Rev. Lett. 91, 096801 (2003)

    Article  ADS  Google Scholar 

  5. C. Untiedt, D.M. Dekker, D. Djukic, J.M. van Ruitenbeek, Phys. Rev. B 69, 081401 (2004)

    Article  ADS  Google Scholar 

  6. R.H.M. Smit, C. Untiedt, A.I. Yanson, J.M. Van Ruitenbeek, Phys. Rev. Lett. 87, 266102 (2001)

    Article  ADS  Google Scholar 

  7. S.R. Bahn, K.W. Jacobsen, Phys. Rev. Lett. 87, 266101 (2001)

    Article  ADS  Google Scholar 

  8. A. Bagrets, N. Papanikolaou, I. Mertig, Phys. Rev. B 73, 045428 (2006)

    Article  ADS  Google Scholar 

  9. A. Delin, E. Tosatti, R. Weht, Phys. Rev. Lett. 92, 057201 (2004)

    Article  ADS  Google Scholar 

  10. V.S. Stepanyuk et al., Phys. Rev. B 70, 195420 (2004)

    Article  ADS  Google Scholar 

  11. S.S. Alexandre, M. Mattesini, J.M. Soler, F. Yndurain, Phys. Rev. Lett. 96, 079701 (2006)

    Article  ADS  Google Scholar 

  12. A. Delin, E. Tosatti, R. Weht, Phys. Rev. Lett. 96, 079702 (2006)

    Article  ADS  Google Scholar 

  13. K.M. Smelova, D.I. Bazhanov, V.S. Stepanyuk, W. Hergert, A.M. Saletsky, P. Bruno, Phys. Rev. B 77, 033408 (2008)

    Article  ADS  Google Scholar 

  14. M. Ternes, A.J. Heinrich, W.-D. Schneider, J. Phys. Condens. Matter 21, 053001 (2008)

    Article  ADS  Google Scholar 

  15. N. Knorr, M.A. Schneider, L. Diekhöner, P. Wahl, K. Kern, Phys. Rev. Lett. 88, 096804 (2002)

    Article  ADS  Google Scholar 

  16. P. Gentile, L. de Leo, M. Fabrizio, E. Tosatti, Europhys. Lett. 87, 27014 (2009)

    Article  ADS  Google Scholar 

  17. P. Lucignano, R. Mazzarello, A. Smogunov, M. Fabrizio, E. Tosatti, Nat. Mater. 8, 563 (2009)

    Article  ADS  Google Scholar 

  18. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  19. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  20. P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  21. D. Vanderbilt, Phys. Rev. B 41, 7892 (1990)

    Article  ADS  Google Scholar 

  22. The palladium pseudopotential has been generated with the method proposed in A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joannopoulos, Phys. Rev. B 41, 1227 (1990) using 3 Bessel functions. As reference all-electron configuration we took the 4d 95s 15p0 configuration. The core radii (in a.u.) are 4d(1.8, 2.4), 5p(2.4). Two values of the core radii indicate a channel which has been pseudized with the ultrasoft scheme. In such a case, the first value is the norm conserving core radius and the second is the ultra-soft one. The s channel has been taken as local with r c = 2.4 a.u. The non linear core correction approximation has been used and the core charge is smoothed before r core = 0.9 a.u.

    Article  ADS  Google Scholar 

  23. M. Methfessel, A.T. Paxton, Phys. Rev. B 40, 3616 (1989)

    Article  ADS  Google Scholar 

  24. A. Smogunov, A. Dal Corso, E. Tosatti, Phys. Rev. B 73, 075418 (2006)

    Article  ADS  Google Scholar 

  25. H. Moseler, H. Häkkinen, R.N. Barnett, U. Landman, Phys. Rev. Lett. 86, 2545 (2001)

    Article  ADS  Google Scholar 

  26. V.L. Moruzzi, P.M. Marcus, Phys. Rev. B 39, 471 (1988)

    Article  ADS  Google Scholar 

  27. D.J. Singh, J. Ashkenazi, Phys. Rev. B 46, 11570 (1992)

    Article  ADS  Google Scholar 

  28. P. Larson, I.I. Mazin, D.J. Singh, Phys. Rev. B 69, 064429 (2004)

    Article  ADS  Google Scholar 

  29. W. Zhang, Q. Ge, L. Wang, J. Chem. Phys. 118, 5793 (2003)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais, Phys. Rev. B 46, 6671 (1992)

    Article  ADS  Google Scholar 

  31. C. Kittel, Introduction to Solid State Physics, 6th edn. (Wiley, New York, 1986), p. 646

    Google Scholar 

  32. F.J. Ribeiro, M.L. Cohen, Phys. Rev. B 68, 035423 (2003)

    Article  ADS  Google Scholar 

  33. E. Tosatti et al., Science 291, 288 (2001)

    Article  ADS  Google Scholar 

  34. H.J. Choi, J. Ihm, Phys. Rev. B 59, 2267 (1999)

    Article  ADS  Google Scholar 

  35. A. Smogunov, A. Dal Corso, E. Tosatti, Phys. Rev. B 70, 045417 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Smogunov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gava, P., Dal Corso, A., Smogunov, A. et al. Magnetism-induced ballistic conductance changes in palladium nanocontacts. Eur. Phys. J. B 75, 57–64 (2010). https://doi.org/10.1140/epjb/e2010-00046-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00046-1

Keywords

Navigation