Skip to main content
Log in

Scaling functions for classical to quantum crossover in the transverse Ising model via an effective Wilsonian renormalization group approach in 4 – ε dimensions

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The classical to quantum crossover, which occurs in d-dimensional transverse field Ising model-like systems decreasing the temperature to zero in the influence domain of the quantum critical point (QCP), is described by employing an effective Wilsonian renormalization group approach in 4 - ε dimensions. The basic ingredient of the treatment is the static action arising from a preliminary one-loop averaging over non-zero frequency modes, which enter the original quantum one. The crossover scaling functions for susceptibility and related thermodynamic quantities are obtained to first order in ε as explicit functions of the temperature and the applied magnetic field. In our static framework, which can be easily extended to other quantum systems exhibiting a critical line which terminates in a QCP, the suitable procedure for observing this type of crossover through genuine thermodynamic measurements is clarified consistently with available experiments. Remarkably, our basic idea and results may be usefully employed to explore also the dimensional crossover which takes place in classical Ising-like systems with slab or film geometry and, possibly, in other finite-size classical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, U.K., 1999)

    Google Scholar 

  2. H.V. Löhneysen, A. Rosch, M. Vojta, P. Wölfle, Rev. Mod. Phys. 79, 1015 (2007)

    Article  ADS  Google Scholar 

  3. J.G. Brankov, D.M. Danchev, N.S. Tonched, The Theory of Critical Phenomena in Finite-Size Systems — Scaling and Quantum Effects (World Scientific, Singapore, 2000); and references therein

    Google Scholar 

  4. M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz (Academic Press, New York, 1983), Vol. 8

    Google Scholar 

  5. A. Caramico D’Auria, L. De Cesare, I. Rabuffo, Physica A 243, 152 (1997), and references therein

    Article  ADS  Google Scholar 

  6. M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico D’Auria, Phys. Rev. B 75, 014105 (2007)

    Article  ADS  Google Scholar 

  7. M.T. Mercaldo, L. De Cesare, I. Rabuffo, A. Caramico D’Auria, Phys. Rev. B 77, 029901E (2008)

    Article  ADS  Google Scholar 

  8. A.J. Millis, Phys. Rev. B 48, 7183 (1993)

    Article  ADS  Google Scholar 

  9. W.A.C. Erkelens, L.P. Regnault, J. Rossat-Mignod, J.E. Moore, R.A. Butera, L.J. De Jongh, Europhys. Lett. 1, 37 (1986)

    Article  ADS  Google Scholar 

  10. I.D. Lawrie, J. Phys. C 11, 1123 (1978)

    Article  ADS  Google Scholar 

  11. P.R. Gerber, J. Phys. C 11, 5005 (1978)

    Article  ADS  Google Scholar 

  12. L. De Cesare, Nuovo Cimento D 1, 289 (1982)

    Article  ADS  Google Scholar 

  13. T. Vojta, Phys. Rev. B 53, 710 (1996)

    Article  ADS  Google Scholar 

  14. P. Pfeuty, D. Jasnow, M.E. Fisher, Phys. Rev. B 10, 2088 (1974)

    Article  ADS  Google Scholar 

  15. I.D. Lawrie, J. Phys. C 11, 3857 (1978)

    Article  ADS  Google Scholar 

  16. D. O’Connor, C.R. Stephens, Phys. Rep. 363, 425 (2002), and references therein

    MATH  MathSciNet  ADS  Google Scholar 

  17. M. Suzuki, Progr. Theor. Phys. 56, 1454 (1976)

    Article  MATH  ADS  Google Scholar 

  18. J. Zinn-Justin, Quantum Field Theory and Critical Phenomena (Clarendon Press, Oxford, 1994)

    Google Scholar 

  19. K.G. Wilson, M.E. Fisher, Phys. Rev. Lett. 28, 248 (1972)

    ADS  Google Scholar 

  20. J. Rudnick, D.R. Nelson, Phys. Rev. B 13, 2208 (1976)

    Article  ADS  Google Scholar 

  21. E. Brezin, J.G. Le Guillon, J. Zinn-Justin, in Phase Transitions and Critical Phenomena, edited by C. Domb, M.S. Green (Academic Press, New York, 1976), Vol. 6

    Google Scholar 

  22. D. O’Connor, C.R. Stephens, Phys. Rev. Lett. 72, 506 (1994)

    Article  ADS  Google Scholar 

  23. K. Lukierska-Walasek, K. Walasek, J. Phys. C 16, 3149 (1983)

    Article  ADS  Google Scholar 

  24. A. Caramico D’Auria, L. De Cesare, I. Rabuffo, Phys. Lett. A 308, 208 (2003)

    Article  MATH  ADS  Google Scholar 

  25. A. Caramico D’Auria, L. De Cesare, I. Rabuffo, Physica A 327, 442 (2003)

    Article  MATH  ADS  Google Scholar 

  26. D. Schmeltzer, Phys. Rev. B 32, 7512 (1985)

    Article  ADS  Google Scholar 

  27. S.-B. Liao, M. Strickland, Nucl. Phys. B 497, 611 (1997)

    Article  ADS  Google Scholar 

  28. C. Bagnuls, C. Bervillier, Phys. Rep. 348, 91 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  29. J. Berges, N. Tetradis, C. Wetterich, Phys. Rep. 363, 223 (2002)

    MATH  MathSciNet  ADS  Google Scholar 

  30. R. Blinc, J. Chem. Phys. Solids 13, 204 (1960)

    Article  ADS  Google Scholar 

  31. S. Katsura, Phys. Rev. 127, 1508 (1962)

    Article  MATH  ADS  Google Scholar 

  32. P.G. de Gennes, Solid State Comm. 1, 132 (1963)

    Article  ADS  Google Scholar 

  33. R.B. Stinchcombe, J. Phys. C 6, 2459 (1973)

    Article  ADS  Google Scholar 

  34. B.K. Chakrabarti, A. Dutta, P. Sen, Quantum Ising Phases and Transitions in Transverse Ising Model (Springer, Berlin, 1996); and references therein

    Google Scholar 

  35. B.K. Chakrabarti, A. Das, Quantum Annealing and Related Optimization Methods, edited by A. Das, B.K. Chakrabarti, LNP 679 (Springer, Heidelberg, 2005)

    Google Scholar 

  36. L. De Cesare, Rev. Solid State Sci. 3, 71 (1989), and references therein

    Google Scholar 

  37. A.P. Young, J. Phys. C 8, L309 (1975)

    Article  ADS  Google Scholar 

  38. P.E. Bloomfield, E.B. Brown, Phys. Rev. B 22, 1353 (1980)

    Article  ADS  Google Scholar 

  39. B. Teng, H.K. Sy, Phys. Rev. B 70, 104115 (2004), and references therein

    Article  ADS  Google Scholar 

  40. D.S. Gaunt, Phase Transitions, edited by H. Levy, J.C. Le Guillon, J. Zinn-Justin (Plenum Press, New York, 1980)

    Google Scholar 

  41. S.-K. Ma, Modern Theory of Critical Phenomena, edited by W.A. Benjamin (Inc. London, U.K., 1976)

    Google Scholar 

  42. L.L. Liu, H.E. Stanley, Phys. Rev. Lett. 29, 927 (1972)

    Article  ADS  Google Scholar 

  43. L.L. Liu, H.E. Stanley, Phys. Rev. B 8, 2279 (1973)

    Article  ADS  Google Scholar 

  44. G. Busiello, L. De Cesare, I. Rabuffo, Physica A 117, 445 (1983)

    Article  ADS  Google Scholar 

  45. J. Hertz, Phys. Rev. B 14, 1165 (1976)

    Article  ADS  Google Scholar 

  46. J. Hubbard, Phys. Rev. Lett. 3, 77 (1959)

    Article  ADS  Google Scholar 

  47. R.L. Stratonovich, Soviet Phys. Dok. 2, 416 (1958)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. T. Mercaldo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

De Cesare, L., Caramico D’Auria, A., Rabuffo, I. et al. Scaling functions for classical to quantum crossover in the transverse Ising model via an effective Wilsonian renormalization group approach in 4 – ε dimensions. Eur. Phys. J. B 73, 327–339 (2010). https://doi.org/10.1140/epjb/e2010-00011-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00011-0

Keywords

Navigation