Skip to main content
Log in

Optimum fields and bounds on heat transport for nonlinear convection in rapidly rotating fluid layer

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

By means of the Howard-Busse method of the optimum theory of turbulence we investigate numerically the effect of strong rotation on the upper bound on the convective heat transport in a horizontal fluid layer of infinite Prandtl number Pr. We discuss the case of fields with one wave number for regions of Rayleigh and Taylor numbers R and Ta where no analytical asymptotic bounds on the Nusselt number Nu can be derived by the Howard-Busse method. Nevertheless we observe that when R > 108 and Ta is large enough the wave number of the optimum fields comes close to the analytical asymptotic result α1 = (R/5)1/4. We detect formation of a nonlinear structure similar to the nonlinear vortex discussed by Bassom and Chang [Geophys. Astrophys. Fluid Dyn. 76, 223 (1994)]. In addition we obtain evidence for a reshaping of the horizontal structure of the optimum fields for large values of Rayleigh and Taylor numbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A.P. Bassom, K. Zhang, Geophys. Astrophys. Fluid Dyn. 76, 223 (1994)

    Article  ADS  Google Scholar 

  2. F.H. Busse, Rep. Prog. Phys. 41, 1929 (1978)

    Article  ADS  Google Scholar 

  3. F.H. Busse, J. Fluid. Mech. 44, 441 (1970)

    Article  MATH  ADS  Google Scholar 

  4. G. Ahlers, S. Grossmann, D. Lohse, Rev. Mod. Phys. 81, 503 (2009)

    Article  ADS  Google Scholar 

  5. Y. Nakagawa, P. Frenzen, Tellus 7, 1 (1955)

    Article  Google Scholar 

  6. G. Veronis, J. Fluid Mech. 5, 401 (1959)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  7. H.T. Rossby, J. Fluid Mech. 36, 309 (1969)

    Article  ADS  Google Scholar 

  8. R.M. Clever, F.H. Busse, J. Fluid Mech. 94, 609 (1979)

    Article  MATH  ADS  Google Scholar 

  9. F.H. Busse, K.E. Heikes, Science 208, 173 (1980)

    Article  ADS  Google Scholar 

  10. B.M. Boubnov, G.S. Golitsyn, J. Fluid Mech. 167, 503 (1986)

    Article  ADS  Google Scholar 

  11. J. Pedlosky, Geophysical Fluid Dynamics, 2nd edn. (Springer, New York, 1987)

    MATH  Google Scholar 

  12. P. Vorobieff, R.E. Ecke, J. Fluid Mech. 458, 191 (2002)

    Article  MATH  ADS  Google Scholar 

  13. K. Julien, S. Legg, J. McWilliams, J. Werne, J. Fluid Mech. 322, 243 (1996)

    Article  MATH  ADS  Google Scholar 

  14. J. Marshall, F. Scott, Rev. Geophys. 37, 1 (1999)

    Article  ADS  Google Scholar 

  15. W.B. Hubbard, A. Burrows, J.L. Lunine, Annu. Rev. Astron. Astrophys. 40, 103 (2000)

    Article  ADS  Google Scholar 

  16. W.V.R. Malkus, Proc. Roy. Soc. London A 225, 185 (1954)

    Article  MathSciNet  ADS  Google Scholar 

  17. W.V.R. Malkus, Proc. Roy. Soc. London A 225, 196 (1954)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  18. L.N. Howard, J. Fluid Mech. 17, 405 (1963)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  19. F.H. Busse, J. Fluid Mech. 37, 457 (1969)

    Article  MATH  ADS  Google Scholar 

  20. S.-K. Chan, Stud. Appl. Math. 50, 13 (1971)

    MATH  Google Scholar 

  21. L.N. Howard, Ann. Rev. Fluid. Mech. 4, 473 (1972)

    Article  ADS  Google Scholar 

  22. V.P. Gupta, D.D. Joseph, J. Fluid Mech. 57, 491 (1973)

    Article  ADS  Google Scholar 

  23. S.-K. Chan, J. Fluid Mech. 64, 477 (1974)

    Article  MATH  ADS  Google Scholar 

  24. C. Hunter, N. Riahi, J. Fluid Mech. 72, 433 (1975)

    Article  MATH  ADS  Google Scholar 

  25. N. Riahi, J. Fluid Mech. 81, 523 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  26. F.H. Busse, Adv. Appl. Mech. 18, 77 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  27. R.R. Kerswell, J. Fluid Mech. 321, 335 (1996)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  28. N.K. Vitanov, F.H. Busse, Zetischrift für Angewandte Mathematik und Physik (ZAMP) 48, 310 (1997)

    MATH  MathSciNet  ADS  Google Scholar 

  29. N.K. Vitanov, Phys. Lett A 248, 338 (1998)

    Article  ADS  Google Scholar 

  30. N.K. Vitanov, Phys. Rev. E 61, 956 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  31. N.K. Vitanov, Eur. Phys. J. B 15, 349 (2000)

    Article  ADS  Google Scholar 

  32. N.K. Vitanov, Physica D 136, 322 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  33. N.K. Vitanov, Progress in Turbulence. Springer Proceedings in Physics. 101, 37 (2005)

    Article  MathSciNet  Google Scholar 

  34. F.H. Busse, J. Fluid Mech. 583, 303 (2007)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  35. N.K. Vitanov, F.H. Busse, Phys. Rev. E 63, Article Number 016303 (2001)

  36. N.K. Vitanov, Phys. Rev. E 62, 3581 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  37. N.K. Vitanov, Phys. Rev. E 67, Article number 026322 (2003)

  38. N. Vitanov, Comptes rendus de l’Academie bulgare des Sciences 62, 701 (2009)

    Google Scholar 

  39. N.K. Vitanov, Eur. Phys. J. B 23, 249 (2001)

    Article  ADS  Google Scholar 

  40. C.R. Doering, P. Constantin, Phys. Rev. Lett. 69, 1648 (1992)

    Article  ADS  Google Scholar 

  41. R. Nicodemus, S. Grossmann, M. Holthaus, Physica D 101, 178 (1997)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  42. C.R. Doering, P. Constantin. Phys. Rev. E. 49, 4087 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  43. C.R. Doering, P. Constantin, Phys. Rev. E 53, 5957 (1996)

    Article  ADS  Google Scholar 

  44. R. Nicodemus, S. Grossmann, M. Holthaus, J. Fluid Mech. 363, 281 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  45. R. Nicodemus, S. Grossmann, M. Holthaus, Eur. Phys. J. B. 10, 385 (1999)

    Article  ADS  Google Scholar 

  46. N. Hoffmann, N.K. Vitanov, Phys. Lett. A 255, 277 (1999)

    Article  ADS  Google Scholar 

  47. R.R. Kerswell, Physica D 100, 355 (1997)

    Article  MATH  ADS  Google Scholar 

  48. R.R. Kerswell, Physica D 121, 175 (1998)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. P. Constantin, C. Hallstrom, V. Putkaradze. Physica D 125, 275 (1999)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  50. R.R. Kerswell, Phys. Fluids 13, 192 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  51. C.P. Caulfield, R.R. Kerswell, Phys. Fluids 13, 894 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  52. G. Ierley, R.A. Worthing, J. Fluid Mech. 441, 223 (2001)

    Article  MATH  ADS  Google Scholar 

  53. P. Constantin, C. Halstrom, V. Poutkaradze, J. Math. Phys. 42, 773 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  54. C.R. Doering, P. Constantin, J. Math. Phys. 42, 784 (2001)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. X. Yan, J. Math. Phys. 45, 2718 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  56. C.B. Kim, J.A. Krommes, J. Stat. Phys. 53, 1103 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  57. C.B. Kim, J.A. Krommes, Phys. Rev. A. 42, 7487 (1990)

    Article  ADS  Google Scholar 

  58. C.Y. Wang, A. Bhattacharjee, E. Hameiri, Physics of Fluids B — Plasma 3, 715 (1991)

    Article  ADS  Google Scholar 

  59. J.A. Krommes, Phys. Rep. 283, 5 (1997)

    Article  ADS  Google Scholar 

  60. M. Sprague, K. Julien, E. Knobloch, J. Werne, J. Fluid Mech. 551, 141 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  61. S. Cahndrasekhar, Hydrodynamics and Hydromagnetic Stability (Dover, New York 1981)

    Google Scholar 

  62. N.K. Vitanov, Physics of Fluids 17, 105106 (2005)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Vitanov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vitanov, N. Optimum fields and bounds on heat transport for nonlinear convection in rapidly rotating fluid layer. Eur. Phys. J. B 73, 265–273 (2010). https://doi.org/10.1140/epjb/e2009-00428-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00428-4

Keywords

Navigation