Skip to main content
Log in

Fcc-to-bct phase transformation of aluminum under triaxial stresses: an ab initio constant pressure study

  • Computational Methods
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We have carried out constant pressure ab initio simulations within a generalized gradient approximation to investigate the response of aluminum to triaxial stresses and found that aluminum undergoes a phase transformation from the face-centered cubic structure (fcc) to a body centered tetragonal (bct) structure having the space group of I4/mmm. The critical stress for the fcc-to-bct transformation increases as the ratio of the triaxial stress increases but such a phase transition never occurs under hydrostatic compression. The bct phase is elastically unstable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. F. Milstein, J. Marschall, H.E. Fang, Phys. Rev. Lett. 74, 2977 (1995)

    Article  ADS  Google Scholar 

  2. F. Milstein, B. Farber, Phys. Rev. Lett. 44, 277 (1980)

    Article  ADS  Google Scholar 

  3. F. Milstein, S. Chantasiriwan, Phys. Rev. B 58, 6006 (1998)

    Article  ADS  Google Scholar 

  4. F. Milstein, H.E. Fang, X.Y. Gong, D. Rasky, Solid State Com. 99, 807 (1996)

    Article  ADS  Google Scholar 

  5. P. Alippi, P.M. Marcus, M. Scheffler, Phys. Rev. Lett. 78, 3892 (1997)

    Article  ADS  Google Scholar 

  6. W. Li, T. Wang, Phys. Rev. B 60, 11954 (1999)

    Article  ADS  Google Scholar 

  7. W. Li, T. Wang, J. Phys: Condens. Matter 10, 9889 (1998)

    Article  ADS  Google Scholar 

  8. M. Jahnatek, M. Krajci, J. Hafner, Phys. Rev. B 60, 014110 (2007)

    Article  ADS  Google Scholar 

  9. M. Durandurdu, J. Phys: Condens. Matter 18, 4887 (2006)

    Article  ADS  Google Scholar 

  10. J. Kim, T. Fukuda, T. Kakeshita, Scripta Materialia 54, 585 (2006)

    Article  Google Scholar 

  11. K. Gall, J. Diao, M.L. Dunn, M. Haftel, N. Bernstein, M.J. Mehl, J. Eng. Mater. Technol. 127, 417 (2005)

    Article  Google Scholar 

  12. T. Makita, K. Doi, K. Nakamura, A. Tachibana, J. Chemical Phys. 119, 538 (2003)

    Article  ADS  Google Scholar 

  13. O. Gülseren, F. Ercolessi, E. Tosatti, Phys. Rev. Lett. 80, 3775 (1998)

    Article  ADS  Google Scholar 

  14. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Acta Materialia 57, 4198 (2009)

    Article  Google Scholar 

  15. Y. Akahama, M. Nishimura, K. Kinoshita, H. Kawamura, Phys. Rev. Lett. 96, 045505 (2006)

    Article  ADS  Google Scholar 

  16. J.A. Moriarty, A.K. McMahan, Phys. Rev. Lett. 48, 809 (1982)

    Article  ADS  Google Scholar 

  17. P.K. Lam, M.L. Cohen, Phys. Rev. B 27, 5986 (1983)

    Article  ADS  Google Scholar 

  18. J.C. Boettger, S.B. Trickey, Phys. Rev. B 53, 3007 (1996)

    Article  ADS  Google Scholar 

  19. G.S. Fanourgakis, V. Pontikis, G. Zerah, Phys. Rev. B 67, 094102 (2003)

    Article  ADS  Google Scholar 

  20. M. Durandurdu, Phys. Rev. B 76, 024102 (2007)

    Article  ADS  Google Scholar 

  21. P. Ordejón, E. Artacho, J.M. Soler, Phys. Rev. B 53, 10441 (1996); D. Sánchez-Portal, P. Ordejón, E. Artacho, J.M. Soler, Int. J. Quantum Chem. 65, 453 (1997)

    Article  ADS  Google Scholar 

  22. N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1997)

    Article  ADS  Google Scholar 

  23. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  24. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  25. R. Hundt, J.C. Schön, A. Hannemann, M. Jansen, J. Appl. Crys. 32, 413 (1999)

    Article  Google Scholar 

  26. M. Melh, A. Aguayo, L.L. Boyer, R. de Coss, Phys. Rev. B 70, 014105 (2004)

    Article  ADS  Google Scholar 

  27. H. Libotte, J.P. Gaspard, Phys. Rev. B 62, 7110 (2000)

    Article  ADS  Google Scholar 

  28. M.I. Haftel, K. Gall, Phys. Rev. B 74, 035420 (2006)

    Article  ADS  Google Scholar 

  29. X.Z. Ji, Y. Tian, F.Y. Jona, Phys. Rev. B 65, 155404 (2002)

    Article  ADS  Google Scholar 

  30. J. Diao, K. Gall, M.L. Dunn, Nature Mater. 2, 656 (2003)

    Article  ADS  Google Scholar 

  31. J. Diao, K. Gall, M.L. Dunn, Phys. Rev. B 70, 075413 (2004)

    Article  ADS  Google Scholar 

  32. D.M. Clatterbuck, D.C. Chrzan, J.W. Morris Jr., Scripta Materialia 49, 1007 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Durandurdu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Durandurdu, M. Fcc-to-bct phase transformation of aluminum under triaxial stresses: an ab initio constant pressure study. Eur. Phys. J. B 72, 241–245 (2009). https://doi.org/10.1140/epjb/e2009-00342-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00342-9

PACS

Navigation