Skip to main content
Log in

Nonlinear conductance reveals positions of carbon atoms in metallic single-wall carbon nanotubes

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Nonlinear quantum conductance in finite metallic single-wall carbon nanotubes due to presence of a single defect has been studied theoretically using π-orbital tight-binding model. The correction to the conductance induced by defects is sensitively dependent on wavefunction amplitudes of contributing electronic states. It has been shown that by calculating this correction to the first order, we can delineate the position of carbon atoms on tubular surface. It can also be used to specify the SWCNT at hand and its level spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. N. Hamada, S.I. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Article  ADS  Google Scholar 

  2. S. Reich, C. Thomsen, J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties (Wiley-VCH, 2004)

  3. S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Article  ADS  Google Scholar 

  4. J.C. Charlier, X. Blase, S. Roche, Rev. Mod. Phys. 79, 677 (2007)

    Article  ADS  Google Scholar 

  5. Z. Yao, H.W.C. Postma, L. Balents, C. Dekker, Nature (London) 402, 273 (1999)

    Article  ADS  Google Scholar 

  6. L. Duclaux, Carbon 40, 175 (2002)

    Article  Google Scholar 

  7. M. Bockrath, W. Liang, D. Bozovic, J.H. Hafner, C.M. Lieber, M. Tinkham, H. Park, Science 291, 283 (2001)

    Article  ADS  Google Scholar 

  8. T. Hertel, R.E. Walkup, P. Avouris, Phys. Rev. B 58, 13870 (1998)

    Article  ADS  Google Scholar 

  9. A.J. Stone, D.J. Wales, Chem. Phys. Lett. 128, 501 (1986)

    Article  ADS  Google Scholar 

  10. P.M. Ajayan, V. Ravikumar, J.C. Charlier, Phys. Rev. Lett. 81, 1437 (1998)

    Article  ADS  Google Scholar 

  11. M. Buongiorno Nardelli, B.I. Yakobson, J. Bernholc, Phys. Rev. B 57, R4277 (1998)

    Article  ADS  Google Scholar 

  12. J.Y. Park, Appl. Phys. Lett. 90, 023112 (2007)

    Article  ADS  Google Scholar 

  13. A.A. Farajian, K. Esfarjani, Y. Kawazoe, Phys. Rev. Lett. 82, 5084 (1999)

    Article  ADS  Google Scholar 

  14. A.S. Maksimenko, G.Y. Slepyan, Phys. Rev. Lett. 84, 362 (2000)

    Article  ADS  Google Scholar 

  15. S. Rochefort, P. Avouris, J. Phys. Chem. A 104, 9807 (2000)

    Article  Google Scholar 

  16. A. Namiranian, Phys. Rev. B 70, 073402 (2004)

    Article  ADS  Google Scholar 

  17. P. Partovi-Azar, A. Namiranian, J. Phys.: Condens. Matter 20, 135213 (2008)

    Article  ADS  Google Scholar 

  18. A. Namiranian, Y.A. Kolesnichenko, A.N. Omelyanchouk, Phys. Rev. B 61, 16796 (2000)

    Article  ADS  Google Scholar 

  19. T.W. Odom, J.L. Huang, P. Kim, C.M. Liener, Nature 391, 62 (1998)

    Article  ADS  Google Scholar 

  20. T.W. Odom, J.L. Huang, C.M. Liener, J. Phys.: Condens. Matter 14, R145 (2002)

    Article  ADS  Google Scholar 

  21. L. Tapasztó, G.I. Márk, A.A. Kóos, P. Lambin, L.P. Biró, J. Phys.: Condens. Matter 18, 5793 (2006)

    Article  ADS  Google Scholar 

  22. L.P. Biró, J. Gyulai, P. Lambin, J.B. Nagy, S. Lazarescu, G.I. Márk, A. Fonseca, P.R. Surján, Z. Szekeres, P.A. Thiry, A.A. Lucas, Carbon 36, 689 (1998)

    Article  Google Scholar 

  23. L.C. Venema, V. Meunier, P. Lambin, C. Dekker, Phys. Rev. B 61, 2991 (2000)

    Article  ADS  Google Scholar 

  24. R. Landauer, Phil. Mag. 21, 863 (1970)

    Article  ADS  Google Scholar 

  25. I.O. Kulik, JETP Lett. 5, 345 (1967)

    ADS  Google Scholar 

  26. I.O. Kulik, A.N. Omelyanchouk, I.G. Tuluzov, Sov. J. Low Temp. Phys. 14, 149 (1988) (Russian Language; page number for english translation of this article is 82)

    Google Scholar 

  27. A. Rubio, D. Sanchez-Portal, E. Artacho, P. Ordejón, M. Soler, Phys. Rev. Lett. 82, 3520 (1999)

    Article  ADS  Google Scholar 

  28. P. Giannozzi et al., http://www.quantum-espresso.org

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Partovi-Azar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Partovi-Azar, P., Namiranian, A. Nonlinear conductance reveals positions of carbon atoms in metallic single-wall carbon nanotubes. Eur. Phys. J. B 72, 89–95 (2009). https://doi.org/10.1140/epjb/e2009-00303-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00303-4

PACS

Navigation