Skip to main content

Advertisement

Log in

Resilience of public transport networks against attacks

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The behavior of complex networks under failure or attack depends strongly on the specific scenario. Of special interest are scale-free networks, which are usually seen as robust under random failure but appear to be especially vulnerable to targeted attacks. In recent studies of public transport networks of fourteen major cities of the world it was shown that these systems when represented by appropriate graphs may exhibit scale-free behavior [Physica A 380, 585 (2007); Eur. Phys. J. B 68, 261 (2009)]. Our present analysis focuses on the effects that defunct or removed nodes have on the properties of public transport networks. Simulating different directed attack strategies, we derive vulnerability criteria that result in minimal strategies with high impact on these systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  3. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. S.N. Dorogovtsev, S.N. Mendes, Evolution of Networks (Oxford University Press, Oxford, 2003)

    MATH  Google Scholar 

  5. R. Albert, H. Jeong, A.-L. Barabási, Nature (London) 406, 378 (2000)

    Article  ADS  Google Scholar 

  6. Y. Tu, Nature (London) 406, 353 (2000)

    Article  ADS  Google Scholar 

  7. H. Jeong, B. Tombor, R. Albert, Z.N. Oltvai, A.-L. Barabási, Nature (London) 407, 651 (2000)

    Article  ADS  Google Scholar 

  8. R.V. Solé, J.M. Montoya: Proc. R. Soc. Lond. B 268, 2039 (2001)

    Article  Google Scholar 

  9. H. Jeong, S.P. Mason, A.-L. Barabási, Z.N. Oltvai, Nature (London) 411, 41 (2001)

    Article  ADS  Google Scholar 

  10. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000)

    Article  ADS  Google Scholar 

  11. D.S. Callaway, M.E.J. Newman, S.H. Strogatz, D.J. Watts, Phys. Rev. Lett. 85, 5468 (2000)

    Article  ADS  Google Scholar 

  12. J.W. Essam, Rep. Prog. Phys. 43, 833 (1980); D. Stauffer, A. Aharony, Introduction to Percolation Theory (Taylor & Francis, London, 1991)

    Article  ADS  MathSciNet  Google Scholar 

  13. P. Erdös, A. Rényi, Publ. Math. (Debrecen) 6, 290 (1959)

    MATH  MathSciNet  Google Scholar 

  14. P. Erdös, A. Rényi, Publ. Math. Inst. Hung. Acad. Sci. 5, 17 (1960)

    MATH  Google Scholar 

  15. P. Erdös, A. Rényi, Bull. Inst. Int. Stat. Tokyo 38, 343 (1961)

    MATH  Google Scholar 

  16. P. Erdös, A. Rényi, B. Bollobás, Random Graphs (Academic Press, London, 1985)

    Google Scholar 

  17. M. Molloy, B.A. Reed, Random Struct. Algorithms 6, 161 (1995); M. Molloy, B. Reed, Combinatorics, Probability and Computing 7, 295 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. R. Cohen, K. Erez, D. ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001)

    Article  ADS  Google Scholar 

  19. T. Kalisky, R. Cohen, Phys. Rev. E 73, 035101(R) (2006)

    ADS  MathSciNet  Google Scholar 

  20. R. Xulvi-Brunet, W. Pietsch, I.M. Sokolov, Phys. Rev. E 68, 036119 (2003)

    Article  ADS  Google Scholar 

  21. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002)

    Article  ADS  Google Scholar 

  22. Note however that an early paper on metabolism networks [6] checked 43 different organisms

  23. A.-L. Barabási, R. Albert, Science 286, 509 (1999); A.-L. Barabási, R. Albert, H. Jeong, Physica A 272, 173 (1999)

    Article  MathSciNet  Google Scholar 

  24. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, J. Wiener, Comput. Netw. 33, 309 (2000)

    Article  Google Scholar 

  25. M. Girvan, M.E.J. Newman, Proc. Natl. Acad. Sci. USA 99, 7821 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. R. Guimera, L.A.N. Amaral, Eur. Phys. J. B 38, 381 (2004)

    Article  ADS  Google Scholar 

  27. R. Guimera, S. Mossa, A. Turtschi, L.A.N. Amaral, Proc. Nat. Acad. Sci. USA 102, 7794 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. C. von Ferber, Yu. Holovatch, V. Palchykov, Condens. Matter Phys. 8, 225 (2005); C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Physica A 380, 585 (2007)

    Google Scholar 

  29. C. von Ferber, T. Holovatch, Yu. Holovatch, V. Palchykov, Eur. Phys. Jour. B 68, 261 (2009), e-print arXiv:0803.3514v1

    Article  ADS  Google Scholar 

  30. C. von Ferber, T. Holovatch, Yu. Holovatch, in Traffic and Granular Flow’ 07, edited by C. Appert-Rolland, F. Chevoir, P. Gondret, S. Lassarre, J.-P. Lebacque, M. Schreckenberg (Springer, 2009), pp. 721–731, e-print arXiv:0709.3206

  31. For links see http://www.apta.com The database is described in details in reference [23]

  32. M. Marchiori, V. Latora, Physica A 285, 539 (2000); V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001); V. Latora, M. Marchiori, Physica A 314, 109 (2002); K.A. Seaton, L.M. Hackett, Physica A 339, 635 (2004); J. Sienkiewicz, J.A. Holyst, Phys. Rev. E 72, 046127 (2005); J. Sienkiewicz, J.A. Holyst, Acta Phys. Polonica B 36, 1771 (2005); P. Angeloudis, D. Fisk, Physica A 367, 553 (2006); P.-P. Zhang, K. Chen, Y. He, T. Zhou, B.-B. Su, Y. Jin, H. Chang, Y.-P. Zhou, L.-C. Sun, B.-H. Wang, D.-R. He, Physica A 360, 599 (2006); X. Xu, J. Hu, F. Liu, L. Liu, Physica A 374, 441 (2007); H. Chang, B.-B. Su, Y.-P. Zhou, D.-R. He, Physica A 383, 687 (2007)

    Article  MATH  ADS  Google Scholar 

  33. P. Sen, S. Dasgupta, A. Chatterjee, P.A. Sreeram, G. Mukherjee, S.S. Manna, Phys. Rev. E 67, 036106 (2003)

    Article  ADS  Google Scholar 

  34. U. Brandes, J. Math. Sociology, 25, 163 (2001)

    MATH  Google Scholar 

  35. R. Cohen, S. Havlin, D. ben-Avraham, Phys. Rev. Lett. 91, 247901 (2003)

    Article  ADS  Google Scholar 

  36. Another obvious difference between the largest cluster S of a network as considered here and the spanning cluster on a lattice is that below the percolation threshold a spanning cluster is absent while there is always some largest cluster, however its relative size may vanish in the infinite network limit.

  37. T. Holovatch, B. Berche, C. von Ferber, e-print arXiv:0908.1050

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. Holovatch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berche, B., von Ferber, C., Holovatch, T. et al. Resilience of public transport networks against attacks. Eur. Phys. J. B 71, 125–137 (2009). https://doi.org/10.1140/epjb/e2009-00291-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00291-3

PACS

Navigation