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Abstract. We numerically calculate the impact of site-energy disorder on the magnetism of biased bilayer
graphene formed with the Bernal stacking. By using the mean-field method, we approximately solve the
Hubbard Hamiltonian and calculate the average magnetization of the two layers, which indicates that
the disorder does not change the nature of the first-order phase transition between paramagnetism and
ferromagnetism, but may increase the critical interaction strength Uc of the Hubbard Hamiltonian for
the system to become the ferromagnetic phase. We also calculate the dependencies of relevant physical
quantities on temperature. The implications of the results are discussed.

PACS. 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and
nanocrystals – 73.23.-b Electronic transport in mesoscopic systems – 75.30.-m Intrinsic properties of
magnetically ordered materials

1 Introduction

Since graphene was successfully fabricated [1], in these
years the system has been a hot topic and has triggered
intensive researches both in theory and experiment due to
its unusual electron characteristics of the linear dispersion
relation near the two inequivalent points K and K′ at the
corners of the Brillouin zone [2]. Recently bilayer graphene
(BLG) has also been made and shows almost equally ex-
citing properties such as the parabolic dispersion relation
at low energies and the Berry’s phase of 2π [3]. A broad
review about the properties of graphene has been given in
reference [4].

The electron-electron (e-e) interactions are usually ne-
glected in single layer graphene as they seem to play a
minor role in the transport measurements [5,6]. However,
when turn to the case of BLG, we can modulate the elec-
tron concentration of each layer by applying an external
gate voltage. In this case, the electron-electron interaction
may become an essential ingredient and needs further in-
vestigation. If the two layers are biased with opposite gate
voltages, the system has nearly identical conduction and
valence bands, and the interaction may drive electron-hole
pair condensation between the layers [7].

The problem of e-e interactions become even more
complex when combined with disorder. In the graphene
systems, several works about disorder show that it is an
indispensable factor in both the electron transport [8–12]
and magnetism properties [13,14]. The disorder which pre-
serves the chiral symmetry can reserve some delocalized
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states while those breaking this symmetry may lead to the
Anderson localization of electron states.

The interaction in systems can cause abundant phe-
nomena such as the counterflow superfluid behavior and
the Kosterlitz-Thouless phase transition [15–17]. It was
suggested that the Kosterlitz-Thouless critical tempera-
ture of the counterflow superfluid is reduced by introduc-
ing disorder [17]. It has recently been shown that when
the long-range Coulomb interaction is replaced by the
Hubbard on-site interaction, there will be a paramagnetic-
ferromagnetic phase transition (PFPT) which is of the
first-order and has a lower critical value of the on-site U
compared with the usual Stoner criterion [18].

Recent experimental investigation has revealed that a
staggered potential which breaks the sublattice symme-
try can be created in biased BLG [19,20]. As a result, an
energy gap is opened at the Fermi energy which provides
new possibilities of devising electronic components.

In this paper we investigate the effect of the site-energy
disorder on the magnetism of biased BLG when the system
is electron-doped compared with the half-filling. We use
the mean-field approximation to deal with the Hubbard
interaction. The results show that in comparison with
the clean system the critical interaction in the Hubbard
Hamiltonian increases as the site-energy disorder grows,
but the first order nature of the PFPT is still retained.

2 Model and method

The system we consider consists of a BLG formed from
two graphene layers with the Bernal stacking [21]. The
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two layers are coupled to opposite external gates. We can
express the Hamiltonian of electrons in the biased disorder
BLG system in terms of π orbitals on carbon atoms. In the
case of low carrier density the density of states (DOS) is
large due to the band gap caused by the bias, the Coulomb
interaction can be efficiently screened and we only need to
consider the Hubbard on-site interaction:

H = HTB + HD + HV + HU , (1)

where HTB is the tight-binding sub-Hamiltonian for the
motion of single electrons in pure BLG, HD, HV and HU

are, respectively, the part of disordered site energies, the
part of biased potential, and the on-site Hubbard interac-
tion. These sub-Hamiltonians are explicitly written as:

HTB = −t

2∑

l=1

∑

�r,σ

{
a†

l,σ(�r)[bl,σ(�r + �a1) + bl,σ(�r + �a2)

+ bl,σ(�r + �a3)] + h.c.
}
− t′

∑

�r,σ

[
a†
1,σ(�r)b2σ(�r)

+ h.c.
]

(2)

HD =
2∑

l=1

∑

�r,σ

[
εa
l (�r)a

†
l,σ(�r)al,σ(�r) + εb

l (�r)b
†
l,σ(�r)bl,σ(�r)

]
,

(3)

HV = V
∑

�r,σ,s

[n1,s,σ(�r) − n2,s,σ(�r)] , (4)

HU = U
∑

�r,l,s

nl,s,↑(�r)nl,s,↓(�r), (5)

where al,σ(�r) (b†l,σ(�r)) is the annihilation operator for elec-
tron on site A (B) of cell �r in layer l (l = 1, 2) with spin
σ (σ =↑, ↓). nl,s=a(b),σ(�r) ≡ s†l,σ(�r)sl,σ(�r) is electron num-

ber operator. ε
a(b)
l (�r) is the disorder induced site-energy

on site A (B) of cell �r in layer l which breaks the sublattice
symmetry. We adopt a rectangular distribution probabil-
ity, which is commonly used to study the generic case of
Anderson localization [24],

P (εa,b
l (�r)) =

{
1/g, for − g/2 ≤ εa,b

l (�r) ≤ g/2,
0, otherwise,

to characterize the strength of disorder. The basis vec-
tors of the honeycomb lattice are �a1 = (1, 0)a and �a2 =
(− 1

2 ,
√

3
2 )a with a = 2.46 Å being the lattice constant,

which define positions �r of cells. V is the applied bias
potential which breaks the top-bottom symmetry of the
system, and U is the strength of the Hubbard on-site inter-
action. We take the in-plane nearest-neighbor (NN) hop-
ping to be t = 2.7 eV [22] and the inter-plane NN hopping
t′ = 0.39 eV [23]. Below we will choose the bias voltage
as V = 0.08 eV [20] which is assumed to be externally
controlled. For the sake of simplicity we set t as energy
units in subsequent calculations.

As is well known, the Hubbard model in two-dimens-
ions cannot be solved exactly without any approximation.
By using the mean-field approach [18,25] in which all fluc-
tuations at sites are frozen to deal with the Hubbard term,
equation (5) can be rewritten as:

HU = U
∑

�r,l,s,σ

〈nl,s,σ(�r)〉nl,s,−σ(�r)

− U
∑

�r,l,s

〈nl,s,↑(�r)〉〈nl,s,↓(�r)〉, (6)

where 〈. . .〉 denotes the statistical averaging. The underly-
ing idea of the mean-field method is that the dynamics at
a given site can be considered as the interaction between
the degrees of freedom on the site with an external bath
created by all other degrees of freedom on other sites.

It is expected that there is an asymmetry between
two layers for the charge density n and magnetization
m = n↑ − n↓ due to the gate voltage [14,18]. Accordingly,
we propose the following forms for the asymmetric spa-
tial distributions in the ground state which also define the
mean-field parameters: 〈n1sσ〉 = 2n+Δn

4 + σ 2m+Δm
4 and

〈n2sσ〉 = 2n−Δn
4 + σ 2m−Δm

4 , where n and m are the aver-
age occupation number and magnetization on each site of
the system, while Δn and Δm are the difference of the av-
erage occupation number and magnetization on each site
between the two layers.

We take 10× 10 sites for each layer and apply the pe-
riodical boundary condition in our numerical calculation.
We investigate the magnetization of the system and the
spatial distributions of charge and spin for systems devi-
ating from the half filling in the presence of disorder. We
choose the ferromagnetic state where all spins are aligned
up as the initial trial wave function to carry out the self-
consistent iteration. We perform configuration averaging
over 100 random realizations.

3 Main results

At first, in Figure 1 we show the DOS (normalized to 1)
of the biased BLG with different disorder strengths g
in the absence of interaction. We can see that there is
a clear particle-hole symmetry, indicating that the site-
energy disorder preserves this symmetry after configura-
tional averaging. When g = 0, the DOS shows many spikes
due to the finite-size effect. There are singularities of DOS
at E = ±t and a large energy range at E = 0 with very
low DOS due to the bias potential. When g increases, the
DOS at the Dirac point increases, while the singularities
are smoothed away. Meanwhile, the width of the energy
band increases with g. A more important point is that
when there is no or low disorder, there is the high DOS at
the edges of the band gap. But when the disorder strength
increases, the gap which is due to the bias potential closes.

The behavior of DOS can be explained as follows. By
introducing the disorder, lifetime of particle states with
given momenta become no longer infinity. This is just a re-
sult of the scattering by the disorder. Thus, the Van-Hove
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Fig. 1. (Color online) Density of states of bilayer graphene
with different site-energy disorder strengths.

singularities, which are related to particular momentum
states in 2D and the onset of another energy band, are
smeared out by the scattering. In other words, the accu-
mulation of the states close to the position of the band
edges of the pristine system is affected by the progressive
raise of new states induced by disorder. Also the DOS
shows a wider energy band reflecting the finite lifetime
of the momentum states near the band edges. When the
disorder strength increases to a larger value, the impact
of disorder surpasses the effect of the bias potential and
the gap disappears. Additionally, we can see that when
the system is lightly doped and deviates from half filling,
DOS at the Fermi level is not zero. This may enhance the
screening of the long-range Coulomb interaction and sup-
port the assumption of on-site interaction in the Hubbard
model.

Secondly, in Figure 2 we show that at the zero tem-
perature T = 0, the relation between the average magne-
tization of each site m and the doping density δn. We plot
m as a function of the Hubbard interaction strength U
for different values of δn and disorder strength g. At half
filling, for which there is average one electron at each site
and δn = 0, from Figure 2a we can see that the average
magnetization of the ground state is zero for all investi-
gated values of g. Because the BLG system is a bipartite
lattice and the site numbers in two sublattices are equal,
this result is in accordance with the famous Lieb’s theorem
II which states that in the case of U > 0, for a bipartite
lattice with a half-filled band the ground state has total
spin S = 1

2 ||B| − |A||, where |A|(|B|) is the number of the
sites in A (B) sublattice [26]. It is also shown that this
behavior is robust against the site-energy disorder.

From Figures 2b–2d where the doping density is
nonzero, we can see that if U is small, the average mag-
netization of the ground state is zero. Further calcula-
tion shows that there exists no antiferromagnetic corre-
lation, so the system is in the paramagnetic phase (PP).
When U grows and reaches a critical value, Uc, the sys-
tem is changed to the ferromagnetic phase (FP) and m
increases to a finite value abruptly and then saturates by
further increasing of U , indicating the system experiences
a first-order phase transition [18]. This saturate value of

Fig. 2. (Color online) The average magnetization m vs. the
Hubbard strength U . (a), (b), (c), and (d) show the results in
cases of doping densities δn = 0%, 1%, 2%, and 3%, respec-
tively. Different symbols correspond to different values of g, as
indicated in (a). The inset in (b) shows the critical Hubbard
strength Uc vs. the doping density δn for g = 0 and g = 1. F
and P are the abbreviation of ferromagnetic and paramagnetic
phase, respectively. The scale is the same as in (a).

the magnetization is equal to the full polarization of the
doping charge, m = δn [14,18] and is also robust against
the change of site-energy disorder. However, the growing
of the strength of disorder can cause the increase of the
critical Hubbard interaction Uc for the transition from PP
to FP. This is the main conclusion of this paper.

In the inset of Figure 2b we show the phase diagram
of PFPT and plot the dependence of the critical interac-
tion strength Uc on the doping density for different disor-
der strengths. It can be seen that the disorder evidently
enhances Uc for all investigated δn. Uc increases almost
linearly with the doping density and this behavior is more
accurate at low doping densities.

The ferromagnetism is in fact induced by the com-
bined effects of the on-site Hubbard interaction and the
long-range correlation among local moments mediated by
conduction electrons. It is known that the diagonal dis-
order can localize electrons in graphene and the extent
of localization increases with the disorder strength [8,10].
So the disorder weakens the long-range ferromagnetic cor-
relation due to the localization of conduction electrons.
When the strength of disorder increases, the correlation
between electrons decreases. To keep ferromagnetism, a
larger critical Uc is needed.

To explain our results better, we plot the spatial dis-
tributions of charge and spin with the doping density
δn = 1% for PP (U = 0.2) and FP (U = 2) phases in
Figures 3 and 4, respectively. In the charge distribution
plot, we introduce the quantity Δn(x, y) = n(x, y) − 1,
the difference between the charge occupation number and
one at each site. It is shown that the site-energy disorder
can cause large fluctuations of charge and spin distribu-
tions both in PP and FP. In PP the extra electrons prefer
to stay in the bottom layer, as the potential is lower than
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Fig. 3. (Color online) The charge and magnetization distribu-
tions in two layers for disorder strength g = 1 and interaction
strength U = 0.2.

Fig. 4. (Color online) The charge and magnetization distribu-
tions in two layers for disorder strength g = 1 and interaction
strength U = 2.

that in the top layer due to the gate voltage. However, in
FP (U = 2), the doping electrons are evenly distributed
in two layers because the effect of the interaction of the
Hubbard interaction and disorder may surpass the biased
potential. We can see that in PP the spin have both posi-
tive and negative values in the system, leading to the zero
average magnetization, while in FP the spin is prone to
be down so that the system can be averagely magnetized.

Finally, we consider the effects of temperature on
the relevant physical result. The factor of temperature
can be introduced by the Fermi-Dirac distribution func-
tion fβ(ε) = 1

exp[β(ε−εF )]+1 , where β = kBT , kB is the
Boltzmann factor and T is the temperature. When at a
finite temperature, the probability of the fermion occupy-
ing one specific energy state can be described by fβ(ε).
In Figure 5 we plot the dependence of average magneti-
zation on interaction strength U for systems with disor-
der strengths g = 1 and g = 2 at different temperatures
T which are also scaled with energy units t. The doping
density is assumed to be δn = 1% as before. We can see
that at realistic finite temperatures (T = 0.05) the average

Fig. 5. (Color online) The average magnetization m versus
the interaction strength U at finite temperature T with disor-
der strength (a) g = 1 and (b) g = 2. Symbols for different
temperatures are indicated in (a). Doping density δn = 1%.

magnetization can also reach the saturation value and the
nature of the PFPT first-order transition is not changed,
but the saturate value of m is smaller than that in the case
of zero temperature. With the increase of temperature the
saturation value decreases for all investigated values of g
and U . All the values of m are smaller than 0.01 which
is the maximum value corresponding to the full polariza-
tion of the doping electrons. This indicates that at finite
T the doping electrons are only partially polarized due to
the effect of thermal fluctuations. Also we can see that at
finite temperature, the critical value of Uc is a little larger
at g = 2 than g = 1, which is consistent with the previous
conclusion.

4 Discussions and summaries

It is well known that a single layer graphene is unstable
against the antiferromagnetic correlation [27] in the pres-
ence of defects. In our calculations, we find that there is
no AF order in the ground state in all the cases under
consideration, but only the paramagnetic phase and fer-
romagnetic phase exists, which denotes that the above two
kinds orders are energy favored.

In conclusion, by using the mean-field approach to deal
with the Hubbard interaction, we numerically calculate
the effect of the site-energy disorder on the magnetiza-
tion of bilayer graphene when the system is low-doped
compared with the half-filling. The results show that the
site-energy disorder preserves the nature of the first-order
PFPT phase transition, but it may enhance the critical in-
teraction strength Uc. We give a simple explanation to this
conclusion due to the competition between localization
caused by disorder and Hubbard interaction. The ther-
mal fluctuations at realistic finite temperature also do not
change the behavior of the first-order transition but can
decrease the saturate magnetization in FP phase.
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