Skip to main content
Log in

Antiferromagnetic Ising model in scale-free networks

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The antiferromagnetic Ising model in uncorrelated scale-free networks has been studied by means of Monte Carlo simulations. These networks are characterized by a connectivity (or degree) distribution P(k) ∼k. The disorder present in these complex networks frustrates the antiferromagnetic spin ordering, giving rise to a spin-glass (SG) phase at low temperature. The paramagnetic-SG transition temperature Tc has been studied as a function of the parameter γ and the minimum degree present in the networks. Tc is found to increase when the exponent γ is reduced, in line with a larger frustration caused by the presence of nodes with higher degree.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  Google Scholar 

  2. M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. The structure and dynamics of networks, edited by M.E.J. Newman, A.L. Barabási, D.J. Watts (Princeton University, Princeton, 2006)

    MATH  Google Scholar 

  4. S.N. Dorogovtsev, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University, Oxford, 2003)

    MATH  Google Scholar 

  5. L. da F. Costa, F.A. Rodrigues, G. Travieso, P.R. Villas Boas, Adv. Phys. 56, 167 (2007)

    Article  ADS  Google Scholar 

  6. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  7. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  8. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  9. K.I. Goh, E.S. Oh, H. Jeong, B. Kahng, D. Kim, Proc. Natl. Acad. Sci. USA 99, 12583 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  10. G. Siganos, M. Faloutsos, P. Faloutsos, C. Faloutsos, IEEE ACM Trans. Netw. 11, 514 (2003)

    Article  Google Scholar 

  11. R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130 (1999)

    Article  ADS  Google Scholar 

  12. H. Jeong, S.P. Mason, A.L. Barabási, Z.N. Oltvai, Nature 411, 41 (2001)

    Article  ADS  Google Scholar 

  13. M.E.J. Newman, Proc. Natl. Acad. Sci. USA 98, 404 (2001)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. L. Bogacz, Z. Burda, B. Waclaw, Physica A 366, 587 (2006)

    Article  ADS  Google Scholar 

  15. A. Barrat, M. Weigt, Eur. Phys. J. B 13, 547 (2000)

    Article  ADS  Google Scholar 

  16. P. Svenson, D.A. Johnston, Phys. Rev. E 65, 036105 (2002)

    Article  ADS  Google Scholar 

  17. C.P. Herrero, Phys. Rev. E 65, 066110 (2002)

    Article  ADS  Google Scholar 

  18. J. Viana Lopes, Y.G. Pogorelov, J.M.B. Lopes dos Santos, R. Toral, Phys. Rev. E 70, 026112 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. J. Candia, Phys. Rev. E 74, 031101 (2006)

    Article  ADS  Google Scholar 

  20. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Rev. Mod. Phys. 80, 1275 (2008)

    Article  ADS  Google Scholar 

  21. F. Iglói, L. Turban, Phys. Rev. E 66, 036140 (2002)

    Article  ADS  Google Scholar 

  22. S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 66, 016104 (2002)

    Article  ADS  Google Scholar 

  23. M. Leone, A. Vázquez, A. Vespignani, R. Zecchina, Eur. Phys. J. B 28, 191 (2002)

    Article  ADS  Google Scholar 

  24. C.P. Herrero, Phys. Rev. E 69, 067109 (2004)

    Article  ADS  Google Scholar 

  25. J.A. Mydosh, Spin Glasses. An Experimental Introduction (Taylor & Francis, London, 1993)

    Google Scholar 

  26. K.H. Fischer, J.A. Hertz, Spin Glasses (Cambridge University, Cambridge, 1991)

    Google Scholar 

  27. I. Kanter, H. Sompolinsky, Phys. Rev. Lett. 58, 164 (1987)

    Article  ADS  Google Scholar 

  28. D.S. Dean, A. Lefèvre, Phys. Rev. Lett. 86, 5639 (2001)

    Article  ADS  Google Scholar 

  29. D.H. Kim, G.J. Rodgers, B. Kahng, D. Kim, Phys. Rev. E 71, 056115 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  30. S. Boettcher, Phys. Rev. B 67, 060403(R) (2003)

    Article  ADS  Google Scholar 

  31. T. Nikoletopoulos, A.C.C. Coolen, I.P. Castillo, N.S. Skantzos, J.P.L. Hatchett, B. Wemmenhove, J. Phys. A 37, 6455 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  32. B. Wemmenhove, T. Nikoletopoulos, J.P.L. Hatchett, J. Stat. Mech.: Theory Exp. p. 11007 (2005)

  33. M. Weigel, D. Johnston, Phys. Rev. B 76, 054408 (2007)

    Article  ADS  Google Scholar 

  34. M. Ostilli, J.F.F. Mendes, Phys. Rev. E 78, 031102 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  35. M. Bartolozzi, T. Surungan, D.B. Leinweber, A.G. Williams, Phys. Rev. B 73, 224419 (2006)

    Article  ADS  Google Scholar 

  36. C.P. Herrero, Phys. Rev. E 77, 041102 (2008)

    Article  ADS  Google Scholar 

  37. M.E.J. Newman, Contemp. Phys. 46, 323 (2005)

    Article  ADS  Google Scholar 

  38. M.J. Krawczyk, K. Malarz, B. Kawecka-Magiera, A.Z. Maksymowicz, K. Kulakowski, Phys. Rev. B 72, 024445 (2005)

    Article  ADS  Google Scholar 

  39. K. Binder, D. Heermann, Monte Carlo Simulation in Statistical Physics (Springer-Verlag, Berlin, 1997)

    MATH  Google Scholar 

  40. B. Bollobás, Modern Graph Theory (Springer-Verlag, New York, 1998)

    MATH  Google Scholar 

  41. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  42. N. Kawashima, A.P. Young, Phys. Rev. B 53, R484 (1996)

    Article  ADS  Google Scholar 

  43. H.G. Katzgraber, A.P. Young, Phys. Rev. B 65, 214402 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. P. Herrero.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrero, C. Antiferromagnetic Ising model in scale-free networks. Eur. Phys. J. B 70, 435–441 (2009). https://doi.org/10.1140/epjb/e2009-00240-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00240-2

PACS

Navigation