Skip to main content
Log in

Spin density wave dislocation in chromium probed by coherent X-ray diffraction

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report on the study of a magnetic dislocation in pure chromium. Coherent X-ray diffraction profiles obtained on the incommensurate Spin Density Wave (SDW) reflection are consistent with the presence of a dislocation of the magnetic order, embedded at a few micrometers from the surface of the sample. Beyond the specific case of magnetic dislocations in chromium, this work may open up a new method for the study of magnetic defects embedded in the bulk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Friedel, Dislocations (Pergamon Press, Oxford, 1964)

    MATH  Google Scholar 

  2. P.A. Lee, T.M. Rice, Phys. Rev. B 19, 3970 (1979)

    Article  ADS  Google Scholar 

  3. L.P. Gor’kov, Pis’ma Zh. Eksp. Theor. Fiz. 38, 76 (1983) [JETP Lett. 38, 87 (1983)]

    Google Scholar 

  4. N.P. Ong, G. Verma, K. Maki, Phys. Rev. Lett. 52, 663 (1984)

    Article  ADS  Google Scholar 

  5. N.P. Ong, K. Maki, Phys. Rev. B 32, 6582 (1985)

    Article  ADS  Google Scholar 

  6. D. Feinberg, J. Friedel, in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker (Klüwer Academic, Dordrecht, 1989)

    Google Scholar 

  7. C.H. Chen, J.M. Gibson, R.M. Fleming, Phys. Rev. Lett. 47, 723 (1981)

    Article  ADS  Google Scholar 

  8. C. Brun, Ph.D. thesis, University of Paris XI, 2007

  9. D. Le Bolloc’h, S. Ravy, J. Dumas, J. Marcus, F. Livet, C. Detlefs, F. Yakhou, L. Paolasini, Phys. Rev. Lett. 95, 116401 (2005)

    Article  ADS  Google Scholar 

  10. P.J. Metaxas, J.P. Jamet, A. Mougin, M. Cormier, J. Ferré, V. Baltz, B. Rodmacq, B. Dieny, R.L. Stamps, Phys. Rev. Lett. 99, 217208 (2007)

    Article  ADS  Google Scholar 

  11. M. Kleiber, M. Bode, R. Ravlic, R. Wiesendanger, Phys. Rev. Lett. 85, 4606 (2000)

    Article  ADS  Google Scholar 

  12. K. Chesnel, M. Belakhovsky, G. van der Laan, F. Livet, A. Marty, G. Beutier, S.P. Collins, A. Haznar, Phys. Rev. B 70, 180402 (2004)

    Article  ADS  Google Scholar 

  13. G. Grüner, Charge Density Waves in Solids (North Holland, 1989)

  14. J.P. Pouget, in Low Dimensional Electronic Properties of Molybdenum Bronzes and Oxides, edited by C. Schlenker (Klüwer Academic, Dordrecht, 1989)

    Google Scholar 

  15. J.P. Pouget, S. Ravy, J. Phys. I (France) 6, 1501 (1996)

    Article  Google Scholar 

  16. J.L. Fry, N.E. Brener, D.G. Laurent, J. Callaway, J. Appl. Phys. 52, 2101 (1981)

    Article  ADS  Google Scholar 

  17. R.S. Fishman, S.H. Liu, Phys. Rev. B 47, 11870 (1993)

    Article  ADS  Google Scholar 

  18. R.S. Fishman, S.H. Liu, Phys. Rev. Lett. 76, 2398 (1996)

    Article  ADS  Google Scholar 

  19. Y. Tsunoda, M. Mori, N. Kunitomi, Y. Teraoka, J. Kanamori, Solid States Commun. 14, 287 (1974)

    Article  ADS  Google Scholar 

  20. D. Gibbs, K.M. Mohanty, J. Bohr, Phys. Rev. B 37, 562 (1988)

    Article  ADS  Google Scholar 

  21. R. Pynn, W. Press, S.M. Shapiro, Phys. Rev. B 13, 295 (1976)

    Article  ADS  Google Scholar 

  22. C.Y. Young, J.B. Sokoloff, J. Phys. F: Met. Phys. 4, 1304 (1974)

    Article  ADS  Google Scholar 

  23. W.B. Cowan, J. Phys. F: Met. Phys. 8, 423 (1978)

    Article  ADS  Google Scholar 

  24. E. Fawcett, Rev. Mod. Phys. 60, 209 (1988)

    Article  ADS  Google Scholar 

  25. A.W. Overhauser, Phys. Rev. 128, 1437 (1962)

    Article  MATH  ADS  Google Scholar 

  26. A.G. Khachaturyan, Theory of structural transformations in solids (Wiley, New York 1983)

    Google Scholar 

  27. X.W. Jiang, R.S. Fishman, J. Phys.: Condens. Matter 9, 3417 (1997)

    Article  ADS  Google Scholar 

  28. P.C. de Camargo, I. Mazzaro, C. Giles, F. Yokaichiya, A.J.A. de Oliveira, H. Klein, J. Baruchel, J. Magn. Magn. Mat. 233, 65 (2001)

    Article  ADS  Google Scholar 

  29. J.P. Hill, G. Helgesen, D. Gibbs, Phys. Rev. B 51, 1033 (1995)

    ADS  Google Scholar 

  30. D. Le Bolloc’h, F. Livet, F. Bley, T. Schulli, M. Veron, T.H. Metzger, J. Synchrotron Rad. 9, 258 (2002)

    Article  Google Scholar 

  31. M. Blume, D. Gibbs, Phys. Rev. B 37, 1779 (1988)

    Article  ADS  Google Scholar 

  32. D. Mannix, P.C. de Camargo, C. Giles, A.J.A. de Oliveira, F. Yokaichiya, C. Vettier, Eur. Phys. J. B 20, 19 (2001)

    Article  ADS  Google Scholar 

  33. L. Paolasini, C. Detlefs, C. Mazzoli, S. Wilkins, P.P. Deen, A. Bombardi, N. Kernavanois, F. de Bergevin, F. Yakhou, J.P. Valade, I. Breslavetz, A. Fondacaro, G. Pepellin, P. Bernard, J. Synchrotron Rad. 14, 301 (2007)

    Article  Google Scholar 

  34. The theoretical transition between the Fresnel and the Fraunhofer regime occurs at a distance d = L2 , which gives 0.5 m with our experimental setup (pinhole size: L = 20 μm; λ = 2.1 Å). However in first approximation, the beam size. evolves as: \( \varsigma = \sqrt {L^2 + \left( {\frac{\lambda } {L}R} \right)^2 } , \) i.e. the beam size doubles at \( R = {{\sqrt 3 L^2 } \mathord{\left/ {\vphantom {{\sqrt 3 L^2 } \lambda }} \right. \kern-\nulldelimiterspace} \lambda } \) = 3.3 m

  35. F. Livet, Acta Cryst. A 63, 87 (2007)

    Article  Google Scholar 

  36. F. Livet, F. Bley, M. Sutton, J. Mainville, E. Geissler, G. Dolino, R. Caudron, Nucl. Instrum. Methods Phys. Res. A 451, 596 (2000)

    Article  ADS  Google Scholar 

  37. I.K. Robinson, R. Pindak, R.M. Fleming, S.B. Dierker, K. Ploog, G. Grübel, D.L. Abernathy, J. Als-Nielsen, Phys. Rev. B 52, 9917 (1995)

    Article  ADS  Google Scholar 

  38. S. Ravy, D. Le Bolloc’h, R. Currat, A. Fluerasu, C. Mocuta, B. Dkhil, Phys. Rev. Lett. 98, 105501 (2007)

    Article  ADS  Google Scholar 

  39. D. Feinberg, J. Friedel, J. Phys. II (France) 49, 485 (1988)

    Google Scholar 

  40. S. Ravy, H. Requardt, D. Le Bolloc’h, P. Foury-Leylekian, J.P. Pouget, R. Currat, P. Monceau, M. Krisch, Phys. Rev. B 69, 115113 (2004)

    Article  ADS  Google Scholar 

  41. S.K. Burke, W.G. Stirling, K.R.A. Ziebeck, Phys. Rev. Lett. 51, 494 (1983)

    Article  ADS  Google Scholar 

  42. I.K. Robinson, Y. Da, T. Spila, J.E. Greene, J. Phys. D.: Appl. Phys. 38, A7 (2005)

    Article  ADS  Google Scholar 

  43. B. Hennion, J.P. Pouget, M. Sato, Phys. Rev. Lett. 68, 2374 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. L.R. Jacques.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacques, V., Le Bolloc’h, D., Ravy, S. et al. Spin density wave dislocation in chromium probed by coherent X-ray diffraction. Eur. Phys. J. B 70, 317–325 (2009). https://doi.org/10.1140/epjb/e2009-00231-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00231-3

PACS

Navigation