Skip to main content
Log in

Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study the excitation of solitons in lattices with Morse interactions in a wide temperature range and their influence on (free) electrons moving in the lattice. The lattice units (considered as “atoms" or “screened ion cores") are treated by classical Langevin equations. For visualizations the densities of the core (valence) electrons are in a first estimate represented by Gaussian densities, thus permitting to visualize lattice compressions. The evolution of the (free) electrons is modelled in the tight binding approximation first using Schrödinger equation and, subsequently, a stochastic description of the evolution as a Markov process. We investigate electron transfer assisted by solitons and solitonic influences on macroscopic transport in particular on diffusion. Then we consider the electron-lattice interaction and obtain numerical solutions of the simultaneously evolving Langevin and Pauli master equations. We show that the proposed mechanism of riding on thermal solitons is relatively fast (of the order of the sound velocity).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A.S. Davydov, Solitons in Molecular Systems, 2nd edn. (Reidel, Dordrecht, 1991), and references therein

  • L.S. Brizhik, A.S. Davydov, Phys. Stat. Sol. B 115, 615 (1983)

  • A.S. Davydov, Phys. Stat. Sol. B 138, 559 (1986)

    Google Scholar 

  • Davydov’s Solitons Revisited. Self-trapping of Vibrational Energy in Protein, edited by A.L. Christiansen, A.C. Scott (Plenum Press, New York, 1983)

  • P.S. Lomdahl, W.C. Kerr, Phys. Rev. Lett. 55, 1235 (1985)

    Google Scholar 

  • A.C. Scott, Phys. Rep. 217, 1 (1992)

    Google Scholar 

  • L. Cruzeiro-Hansson, S. Takeno, Phys. Rev. E 56, 894 (1997), and references therein

  • A.J. Heeger, S. Kivelson, J.R. Schrieffer, W.P. Su, Rev. Mod. Phys. 60, 781 (1988), and references therein

  • M. Toda, Nonlinear Waves and Solitons (KTK Scientific Publishers, Tokyo, 1989)

  • M. Toda, Theory of Nonlinear Lattices, 2nd edn. (Springer-Verlag, New York, 1989)

  • J. Dancz, S.A. Rice, J. Chem. Phys. 67, 1418 (1977)

    Google Scholar 

  • T.J. Rolfe, S.A. Rice, J. Dancz, J. Chem. Phys. 70, 26 (1979)

  • T.P. Valkering, J. Phys. A: Math. Gen. 11, 1885 (1978)

    Google Scholar 

  • G. Friesecke, J.A.D. Wattis, Commun. Math. Phys. 161, 391 (1994)

  • A.V. Zolotaryuk, K.H. Spatschek, A.V. Savin, Phys. Rev. B 54, 266 (1996)

    Google Scholar 

  • A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 44, 509 (2005)

    Google Scholar 

  • A.P. Chetverikov, W. Ebeling, M.G. Velarde, Eur. Phys. J. B 51, 87 (2006)

    Google Scholar 

  • A.P. Chetverikov, W. Ebeling, G. Röpke, M.G. Velarde, Contr. Plasma Phys. 51, 87 (2006)

    Google Scholar 

  • M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 15, 245 (2005)

    Google Scholar 

  • A.P. Chetverikov, W. Ebeling, M.G. Velarde, Int. J. Bifurcation Chaos 16, 1613 (2006)

    Google Scholar 

  • M.G. Velarde, W. Ebeling, D. Hennig, C. Neissner, Int. J. Bifurcation Chaos 16, 1035 (2006)

    Google Scholar 

  • D. Hennig, C. Neissner, M.G. Velarde, W. Ebeling, Phys. Rev. B 73, 024306 (2006)

    Google Scholar 

  • D. Hennig, A.P. Chetverikov, M.G. Velarde, W. Ebeling, Phys. Rev. E 76, 046602 (2007)

    Google Scholar 

  • M.G. Velarde, W. Ebeling, A.P. Chetverikov, D. Hennig, Int. J. Bifurcation Chaos 18, 521 (2008)

    Google Scholar 

  • M.G. Velarde, W. Ebeling, A.P. Chetverikov, Int. J. Bifurcation Chaos 18, 3815 (2008)

    Google Scholar 

  • A.P. Chetverikov, W. Ebeling, M.G. Velarde, Int. J. Quantum Chem. (2009), in press.

  • H.B. Gray, J.R. Winkler, Proc. Natl. Acad. Sci. USA 102, 3534 (2005)

    Google Scholar 

  • C. Wan, T. Fiebig, S.O. Kelley, C.R. Treadway, J.K. Barton, A.H. Zewail, Proc. Natl. Acad. Sci. USA 96, 6014 (1999)

    Google Scholar 

  • C. Wan, T. Fiebig, O. Schiemann, J.K. Barton, A.H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14052 (2000)

    Google Scholar 

  • E.M. Conwell, S.V. Rakhmanova, Proc. Natl. Acad. Sci. USA 97, 4556 (2000)

    Google Scholar 

  • M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M.E. Michel-Beyerle, J. Jortner, Proc. Natl. Acad. Sci. USA 96, 11713 (1999)

    Google Scholar 

  • V. Sartor, P.T. Henderson, G.B. Schuster, J. Am. Chem. Soc. 121, 11027 (1999)

    Google Scholar 

  • F. Marchesoni, C. Lucheroni, Phys. Rev. E 44, 5303 (1991)

    Google Scholar 

  • G. Kalosakas, S. Aubry, G.P. Tsironis, Phys. Rev. B 58, 3094 (1998)

    Google Scholar 

  • G. Kalosakas, K.O. Rasmussen, A.R. Bishop, J. Chem. Phys. 118, 3731 (2003)

    Google Scholar 

  • G. Kalosakas, K.O. Rasmussen, A.R. Bishop, Synthetic Metals 141, 93 (2004)

    Google Scholar 

  • T. Dittrich, P. Hänggi, G.-I. Ingold, B. Kramer, G. Schön, W. Zwerger, Quantum transport and dissipation (Wiley-VCH, Weinheim, 1998)

  • J.S. Blakemore, Semiconductor Statistics (Pergamon Press, 1962); J.S. Blakemore, Solid State Physics (Cambridge Univ. Press, Cambridge, 1985)

  • V.L. Bonch-Bruevich, A.G. Mironov, I.P. Zvyagin, Rivista Nuovo Cimento 3, 321 (1973)

    Google Scholar 

  • V.L. Bonch-Bruevich, I.P. Zvyagin, R. Keiper, A.G. Mironov, R. Enderlein, B. Esser, Electron theory of disordered semiconductores (in Russ.) (Nauka, Moscow, 1981)

  • I.P. Zvyagin, Kinetic phenomena in disordered semiconductors (MGU Publ., Moscow, 1984)

  • H. Böttger, V.V. Bryksin, Phys. Stat. Sol. 78, 9, 419 (1976)

    Google Scholar 

  • H. Böttger, V.V. Bryksin, Hopping Conduction in Solids (Akademie-Verlag, Berlin, 1985)

  • E.W. Schlag, D.-Y. Yang, S.-Y. Sheu, H.L. Selzle, S.H. Lin, P.M. Rentzepis, Proc. Natl. Acad. Sci. USA 97, 9849 (2000)

    Google Scholar 

  • S.-Y. Sheu, D.-Y. Yang, H.L. Selzle, E.W. Schlag, Eur. Phys. J. D 20, 557 (2002)

    Google Scholar 

  • W. Pauli, Festschrift zum 60. Geburtstage A. Sommerfelds (S. Hirzel, Leipzig, 1928), p. 30

  • R. Tolman, The Principles of Statistical Mechanics (Oxford University Press, Oxford, 1938), Sects. 100, 103, 105

  • L. Van Hove, Physica 21, 517 (1955); L. Van Hove, Physica 23, 441 (1957); L. Van Hove, Physica 25, 268 (1959)

  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Google Scholar 

  • A.V. Filinov, V.O. Golubnychiy, M. Bonitz, W. Ebeling, J.W. Dufty, Phys. Rev. E 70, 046411 (2004)

    Google Scholar 

  • Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1979)

  • J.L. Lebowitz, P.G. Bergmann, Ann. Phys. N.Y. 1, 1 (1957)

    Google Scholar 

  • T.Yu. Astakhova, G.A. Vinogradov, J. Phys. A Math. Gen. 39, 3593 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Ebeling.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chetverikov, A., Ebeling, W. & Velarde, M. Local electron distributions and diffusion in anharmonic lattices mediated by thermally excited solitons. Eur. Phys. J. B 70, 217–227 (2009). https://doi.org/10.1140/epjb/e2009-00224-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00224-2

PACS

Navigation