Skip to main content
Log in

Multiglass order and magnetoelectricity in Mn2+ doped incipient ferroelectrics

  • Topical issue on Magnetoelectric Interaction Phenomena in Crystals
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

“Multiglass” materials with simultaneous occurrence of two different glassy states extend the frame of conventional multiferroicity, which is devoted to crystalline materials with coexisting uniform long-range electric and magnetic ordering. The concept applies to Sr0.98Mn0.02TiO3 ceramics, where A-site substituted Mn2+ ions are at the origin of both a polar and a spin cluster glass. Spin freezing is initiated below the dipolar glass temperature, Tg e ≈ 38 K, which is seemingly indicated by a divergence of the nonlinear susceptibility, χ3. Below Tg m ≈ 34 K both glass phases are independently verified by memory and rejuvenation effects. Biquadratic interaction of the Mn2+ spins with ferroelectric correlations of their off-center pseudospins in the incipient ferroelectric host crystal SrTiO3 explains the high spin glass temperature and comparably strong third-order magnetoelectric coupling between the polar and the magnetic degrees of freedom. Preliminary results on the related compound K0.97Mn0.03TaO3 favorably comply with the magnetoelectric multiglass concept.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007)

    Article  Google Scholar 

  2. L.D. Landau, E.M. Lifshitz, Electrodynamics of Continuous Media (Pergamon, Oxford, 1960), p. 119

    MATH  Google Scholar 

  3. H. Schmid, Ferroelectrics 162, 317 (1994)

    Article  Google Scholar 

  4. S.-W.Cheong, M. Mostovoy, Nat. Mater. 6, 13 (2007)

    Article  ADS  Google Scholar 

  5. K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  6. K. Binder, J.D. Reger, Adv. Phys. 41, 547 (1992)

    Article  ADS  Google Scholar 

  7. V.V. Shvartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, P. Vilarinho, Phys. Rev. Lett. 101, 165704 (2008)

    Article  ADS  Google Scholar 

  8. W. Kleemann, V.V. Shvartsman, S. Bedanta, P. Borisov, A. Tkach, P. Vilarinho, J. Phys.: Condens. Matter 20, 434216 (2008)

    Article  ADS  Google Scholar 

  9. V.V. Laguta, I.V. Kondakova, I.P. Bykov, M.D. Glinchuk, A. Tkach, P.M. Vilarinho, L. Jastrabik, Phys. Rev. B 76, 054104 (2007)

    Article  ADS  Google Scholar 

  10. A. Tkach, P.M. Vilarinho, A.L. Kholkin, Appl. Phys. Lett. 86, 172902 (2005); A. Tkach, P.M. Vilarinho, A.L. Kholkin, Acta Mater. 53, 5061 (2005); A. Tkach, P.M. Vilarinho, A.L. Kholkin, Acta Mater. 54, 5385 (2006)

    Article  ADS  Google Scholar 

  11. K.A. Müller, H. Burkard, Phys. Rev. B 19, 3593 (1979)

    Article  ADS  Google Scholar 

  12. B. Vugmeister, M.D. Glinchuk, Rev. Mod. Phys. 62, 993 (1990)

    Article  ADS  Google Scholar 

  13. U.T. Höchli, K. Knorr, A. Loidl, Advan. Phys. 39, 405 (1990)

    Article  ADS  Google Scholar 

  14. W. Kleemann, S. Kütz, D. Rytz, Europhys. Lett. 4, 239 (1987)

    Article  ADS  Google Scholar 

  15. S. Miga, J. Dec, W. Kleemann, Rev. Sci. Instr. 78, 033902 (2007)

    Article  ADS  Google Scholar 

  16. J. Hessinger, K. Knorr, Ferroelectrics 127, 29 (1992)

    Article  Google Scholar 

  17. J. Hemberger, H. Ries, A. Loidl, R. Böhmer, Phys. Rev. Lett. 76, 2330 (1996)

    Article  ADS  Google Scholar 

  18. C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 96, 205505 (2006); C.J. Fennie, K.M. Rabe, Phys. Rev. Lett. 97, 267602 (2006)

    Article  ADS  Google Scholar 

  19. S. Bedanta, W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009)

    Article  ADS  Google Scholar 

  20. P. Borisov, A. Hochstrat, V.V. Shvartsman, W. Kleemann, Rev. Sci. Instrum. 78, 106105 (2007)

    Article  ADS  Google Scholar 

  21. W. Kleemann, J. Dec, Y.G. Wang, P. Lehnen, S.A. Prosandeev, J. Phys. Chem. Solids 61, 167 (2000)

    Article  ADS  Google Scholar 

  22. V.V. Shartsman, S. Bedanta, P. Borisov, W. Kleemann, A. Tkach, P. Vilarinho, to be published

  23. G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Kleemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleemann, W., Bedanta, S., Borisov, P. et al. Multiglass order and magnetoelectricity in Mn2+ doped incipient ferroelectrics. Eur. Phys. J. B 71, 407–410 (2009). https://doi.org/10.1140/epjb/e2009-00222-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00222-4

PACS

Navigation