Skip to main content
Log in

Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model

The European Physical Journal B Aims and scope Submit manuscript

Abstract

We apply the Nyquist method to the Hamiltonian mean field (HMF) model in order to settle the linear dynamical stability of a spatially homogeneous distribution function with respect to the Vlasov equation. We consider the case of Maxwell (isothermal) and Tsallis (polytropic) distributions and show that the system is stable above a critical kinetic temperature Tc and unstable below it. Then, we consider a symmetric double-humped distribution, made of the superposition of two decentered Maxwellians, and show the existence of a re-entrant phase in the stability diagram. When we consider an asymmetric double-humped distribution, the re-entrant phase disappears above a critical value of the asymmetry factor Δ > 1.09. We also consider the HMF model with a repulsive interaction. In that case, single-humped distributions are always stable. For asymmetric double-humped distributions, there is a re-entrant phase for 1 ≤ Δ < 25.6, a double re-entrant phase for 25.6 < Δ < 43.9 and no re-entrant phase for Δ > 43.9. Finally, we extend our results to arbitrary potentials of interaction and mention the connexion between the HMF model, Coulombian plasmas and gravitational systems. We discuss the relation between linear dynamical stability and formal nonlinear dynamical stability and show their equivalence for spatially homogeneous distributions. We also provide a criterion of dynamical stability for spatially inhomogeneous systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Dynamics and thermodynamics of systems with long range interactions, edited by T. Dauxois et al., Lecture Notes in Physics 602 (Springer, 2002)

  • Dynamics and thermodynamics of systems with long range interactions: Theory and experiments, edited by A. Campa et al., AIP Conf. Proc. 970 (AIP, 2008)

  • P.H. Chavanis, Ph.D. thesis, École Normale Supérieure de Lyon (2006)

  • P.H. Chavanis, J. Sommeria, R. Robert, ApJ 471, 385 (1996)

    Google Scholar 

  • P.H. Chavanis, Statistical mechanics of two-dimensional vortices and stellar systems, in houches

  • P.H. Chavanis, M. Ribot, C. Rosier, C. Sire, Banach Center Publ. 66, 103 (2004)

  • P.H. Chavanis, C.R. Physique 7, 318 (2006)

    Google Scholar 

  • P.H. Chavanis, Eur. Phys. J. B 62, 179 (2008)

    Google Scholar 

  • D. Lynden-Bell, R. Wood, MNRAS 138, 495 (1968)

    Google Scholar 

  • W. Thirring, Z. Phys. 235, 339 (1970)

    Google Scholar 

  • D.H.E. Gross, Microcanonical Thermodynamics: Phase Transitions in “Small” Systems, Lecture Notes in Physics 66 (World Scientific, Singapore, 2001)

  • M. Kiessling, PNAS 100, 1510 (2003)

  • R.A. Smith, T.M. O’Neil, Phys. Fluids B 2, 2961 (1990)

    Google Scholar 

  • T. Padmanabhan, Phys. Rep. 188, 285 (1990)

    Google Scholar 

  • R. Ellis, K. Haven, B. Turkington, J. Stat. Phys. 101, 999 (2000)

    Google Scholar 

  • J. Barré, D. Mukamel, S. Ruffo, Phys. Rev. Lett. 87, 030601 (2001)

    Google Scholar 

  • P.H. Chavanis, Phys. Rev. E 65, 056123 (2002)

    Google Scholar 

  • P.H. Chavanis, A&A 401, 15 (2003)

  • H. Touchette, R.S. Ellis, B. Turkington, Physica A 340, 138 (2004)

    Google Scholar 

  • F. Bouchet, J. Barré, J. Stat. Phys. 118, 1073 (2005)

    Google Scholar 

  • P.H. Chavanis, Int. J. Mod. Phys. B 20, 3113 (2006)

    Google Scholar 

  • S. Chandrasekhar, Principles of Stellar Dynamics (University of Chicago Press, 1942)

  • W.C. Saslaw, Gravitational Physics of Stellar and Galactic Systems (Cambridge Univ. Press, 1985)

  • J. Binney, S. Tremaine, Galactic Dynamics (Princeton Series in Astrophysics, 1987)

  • L. Spitzer, Dynamical Evolution of Globular Clusters (Princeton University Press, 1987)

  • D. Heggie, P. Hut, The Gravitational Million-Body Problem: A Multidisciplinary Approach to Star Cluster Dynamics (Cambridge Univ. Press, 2003)

  • P.H. Chavanis, Physica A 387, 787 (2008)

    Google Scholar 

  • P.H. Chavanis, Physica A 387, 1123 (2008)

    Google Scholar 

  • P.H. Chavanis, Phys. Rev. E 64, 026309 (2001)

    Google Scholar 

  • D. Dubin, Phys. Plasmas 10, 1338 (2003)

  • F. Bouchet, T. Dauxois, Phys. Rev. E 72, 5103 (2005)

    Google Scholar 

  • P.H. Chavanis, J. Vatteville, F. Bouchet, Eur. Phys. J. B 46, 61 (2005)

    Google Scholar 

  • P.H. Chavanis, M. Lemou, Eur. Phys. J. B 59, 217 (2007)

    Google Scholar 

  • V. Latora, A. Rapisarda, C. Tsallis, Phys. Rev. E 64, 056134 (2001)

    Google Scholar 

  • Y.Y. Yamaguchi, J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Physica A 337, 36 (2004)

    Google Scholar 

  • A. Campa, A. Giansanti, G. Morelli, Phys. Rev. E 76, 041117 (2007)

    Google Scholar 

  • M. Antoni, S. Ruffo, A. Torcini, Europhys. Lett. 66, 645 (2004)

    Google Scholar 

  • P.H. Chavanis, A&A 432, 117 (2005)

  • A. Pluchino, V. Latora, A. Rapisarda, Physica A 338, 60 (2004)

    Google Scholar 

  • A. Rapisarda, A. Pluchino, Europhys. News 36, 202 (2005)

    Google Scholar 

  • Y. Yamaguchi, F. Bouchet, T. Dauxois, J. Stat. Mech. 1, 01020 (2007)

    Google Scholar 

  • P.H. Chavanis, M. Lemou, Phys. Rev. E 72, 061106 (2005)

    Google Scholar 

  • X.P. Huang, C.F. Driscoll, Phys. Rev. Lett. 72, 2187 (1994)

    Google Scholar 

  • H. Brands, P.H. Chavanis, R. Pasmanter, J. Sommeria, Phys. Fluids 11, 3465 (1999)

    Google Scholar 

  • P.H. Chavanis, Physica A 387, 1504 (2008)

    Google Scholar 

  • D. Lynden-Bell, MNRAS 136, 101 (1967)

  • J. Miller, Phys. Rev. Lett. 65, 2137 (1990)

    Google Scholar 

  • R. Robert, J. Sommeria, JFM 229, 291 (1991)

    Google Scholar 

  • J. Barré, T. Dauxois, G. de Ninno, D. Fanelli, S. Ruffo, Phys. Rev. E 69, 045501 (2004)

    Google Scholar 

  • A. Antoniazzi, F. Califano, D. Fanelli, S. Ruffo, Phys. Rev. Lett. 98, 150602 (2007)

    Google Scholar 

  • Y. Levin, R. Pakter, T.N. Teles, Phys. Rev. Lett. 100, 040604 (2008)

    Google Scholar 

  • Y. Levin, R. Pakter, F.B. Rizzato, Phys. Rev. E 78, 021130 (2008)

    Google Scholar 

  • Y. Yamaguchi, Phys. Rev. E 78, 041114 (2008)

    Google Scholar 

  • R. Bachelard, C. Chandre, D. Fanelli, X. Leoncini, S. Ruffo, Phys. Rev. Lett. 101, 260603 (2008)

    Google Scholar 

  • P.H. Chavanis, J. Sommeria, JFM 314, 267 (1996)

    Google Scholar 

  • P.H. Chavanis, J. Sommeria, MNRAS 296, 569 (1998)

    Google Scholar 

  • R. Ellis, K. Haven, B. Turkington, Nonlinearity 15, 239 (2002)

    Google Scholar 

  • P.H. Chavanis, Eur. Phys. J. B 53, 487 (2006)

    Google Scholar 

  • A. Antoniazzi, D. Fanelli, J. Barré, P.H. Chavanis, T. Dauxois, S. Ruffo, Phys. Rev. E 75, 011112 (2007)

    Google Scholar 

  • A. Antoniazzi, D. Fanelli, S. Ruffo, Y. Yamaguchi, Phys. Rev. Lett. 99, 040601 (2007)

    Google Scholar 

  • P.H. Chavanis, G. De Ninno, D. Fanelli, S. Ruffo, in Chaos, Complexity and Transport, edited by C. Chandre, X. Leoncini, G. Zaslavsky (World Scientific, Singapore, 2008), p. 3 [arXiv:0712.1752]

  • F. Staniscia, P.H. Chavanis, G. De Ninno, D. Fanelli, [arXiv:0903.5039]

  • A. Venaille, F. Bouchet, Phys. Rev. Lett. 102, 104501 (2009)

    Google Scholar 

  • A. Campa, P.H. Chavanis, A. Giansanti, G. Morelli, Phys. Rev. E 78, 040102(R) (2008)

  • P.H. Chavanis, Eur. Phys. J. B 52, 47 (2006)

    Google Scholar 

  • P. Mineau, M.R. Feix, J.L. Rouet, Astron. Astrophys. 228, 344 (1990)

    Google Scholar 

  • H. Morita, K. Kaneko, Phys. Rev. Lett. 96, 050602 (2006)

    Google Scholar 

  • K.R. Yawn, B.N. Miller, Phys. Rev. E 56, 2429 (1997)

    Google Scholar 

  • A. Pluchino, A. Rapisarda, C. Tsallis, Europhys. Lett. 80, 26002 (2007)

    Google Scholar 

  • F. Bouchet, T. Dauxois, D. Mukamel, S. Ruffo, Phys. Rev. E 77, 1125 (2008)

    Google Scholar 

  • A. Pluchino, V. Latora, A. Rapisarda, Physica A 340, 187 (2004)

    Google Scholar 

  • F. Baldovin, E. Orlandini, Phys. Rev. Lett. 96, 240602 (2006); F. Baldovin, E. Orlandini, Phys. Rev. Lett. 97, 100601 (2006)

    Google Scholar 

  • F. Baldovin, E. Orlandini, Int. J. Mod. Phys. B 21, 4000 (2007)

    Google Scholar 

  • F. Baldovin, P.H. Chavanis, E. Orlandini, Phys. Rev. E 79, 011102 (2009)

    Google Scholar 

  • P.H. Chavanis, Dynamics and thermodynamics of systems with long-range interactions: interpretation of the different functionals, in assise

  • R. Balescu, Statistical Mechanics of Charged Particles (Interscience, New York, 1963)

  • S. Ichimaru, Basic Principles of Plasma Physics (W.A. Benjamin, Reading, MA, 1973)

  • D.R. Nicholson, Introduction to Plasma Theory (Krieger Publishing Company, Florida, 1992)

  • D.D. Holm, J.E. Marsden, T. Ratiu, A. Weinstein, Phys. Rep. 123, 1 (1985)

    Google Scholar 

  • H. Nyquist, Bell System Tech. J. 11, 126 (1932)

    Google Scholar 

  • V.A. Antonov, Astr. Zh. 37, 918 (1960) (translated in: Sov. Astron. 4, 859 (1961))

  • P. Bartholomew, MNRAS 151, 333 (1971)

  • H. Kandrup, ApJ 370, 312 (1991)

  • M. Lemou, F. Méhats, P. Raphaël, preprint

  • M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Google Scholar 

  • W. Braun, K. Hepp, Commun. Math. Phys. 56, 101 (1977)

    Google Scholar 

  • S. Inagaki, T. Konishi, Publ. Astron. Soc. Jpn 45, 733 (1993)

    Google Scholar 

  • M.Y. Choi, J. Choi, Phys. Rev. Lett. 91, 124101 (2003)

    Google Scholar 

  • P.H. Chavanis, C. Sire, Physica A 356, 419 (2005)

    Google Scholar 

  • H.C. Plummer, MNRAS 71, 460 (1911)

  • A.S. Eddington, MNRAS 76, 572 (1916)

  • M. Le Bellac, Des phénomènes critiques aux champs de jauge (InterÉditions/Éditions du CNRS, 1988)

  • J. Barré, F. Bouchet, T. Dauxois, S. Ruffo, Eur. Phys. J. B 29, 577 (2002)

    Google Scholar 

  • P.H. Chavanis, A&A 451, 109 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. H. Chavanis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chavanis, P., Delfini, L. Dynamical stability of systems with long-range interactions: application of the Nyquist method to the HMF model. Eur. Phys. J. B 69, 389–429 (2009). https://doi.org/10.1140/epjb/e2009-00180-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00180-9

PACS

Navigation