Skip to main content
Log in

Intriguing electron correlation effects in the photoionization of metallic quantum-dot nanorings

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report detailed results on ionization in metallic quantum-dot (QD) nanorings described by the extended Hubbard model at half filling obtained by exact numerical diagonalization. In spite of very strong electron correlations, the ionization spectra are astonishingly scarce. We attribute this scarcity to a hidden quasi-symmetry, generalizing thereby similar results on optical absorption recently reported [Phys. Rev. B 75, 125323 (2007); 77, 165339 (2008)]. Numerical results indicate that this hidden quasi-symmetry of the extended Hubbard model does not evolve into a true (hidden) symmetry but remains a quasi-symmetry in the case of the restricted Hubbard model as well. Based on the observation on the number of significant ionization signals per each spatial symmetry, we claim the existence of a one-to-one map between the relevant ionization signals of the correlated half-filled nanorings and the one-hole and two-hole-one-particle processes possible in the noninteracting case. Similar to the case of optical absorption, numerous avoided crossings (anticrossings) are present in the ionization spectra, which often involve more than two states. The present results demonstrate that ionization could be a useful tool to study electron correlations in metallic QD-nanoarrays, providing information that is complementary to optical absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • J. Heath, C. Knobler, D. Leff, J. Phys. Chem. B 101, 189 (1997)

    Google Scholar 

  • C.P. Collier, R.J. Saykally, J.J. Shiang, S.E. Henrichs, J.R. Heath, Science 277, 1978 (1997)

  • R. Ingram et al., J. Amer. Chem. Soc. 119, 9279 (1997)

  • G. Markovich, C.P. Collier, J.R. Heath, Phys. Rev. Lett. 80, 3807 (1998)

    Google Scholar 

  • J. Shiang, J. Heath, C. Collier, R. Saykally, J. Phys. Chem. B 102, 3425 (1998)

    Google Scholar 

  • S. Chen et al., Science 280, 2098 (1998)

  • G. Medeiros-Ribeiro, D.A.A. Ohlberg, R.S. Williams, J.R. Heath, Phys. Rev. B 59, 1633 (1999)

    Google Scholar 

  • S. Henrichs, C. Collier, R. Saykally, Y. Shen, J. Heath, J. Amer. Chem. Soc. 122, 4077 (2000)

    Google Scholar 

  • J. Sampaio, K. Beverly, J. Heath, J. Phys. Chem. B 105, 8797 (2001)

    Google Scholar 

  • K. Beverly, J. Sampaio, J. Heath, J. Phys. Chem. B 106, 2131 (2002)

    Google Scholar 

  • M.A. Kastner, Physics Today 46, 24 (1993)

    Google Scholar 

  • I. Bâldea, L.S. Cederbaum, Phys. Rev. Lett. 89, 133003 (2002)

    Google Scholar 

  • I. Bâldea, L.S. Cederbaum, Phys. Rev. B 75, 125323 (2007)

    Google Scholar 

  • I. Bâldea, L.S. Cederbaum, Phys. Rev. B 77, 165339 (2008)

    Google Scholar 

  • I. Bâldea, A.K. Gupta, L.S. Cederbaum, N. Moiseyev, Phys. Rev. B 69, 245311 (2004)

    Google Scholar 

  • K. Siegbahn et al., ESCA-Atomic Molecular and Solid State Structures Studies by Means of Electron Spectroscopy (North-Holland, Amsterdam, 1967)

  • K. Siegbahn et al., ESCA-Applied to Free Molecules (North-Holland, Amsterdam, 1969)

  • K. Siegbahn, L. Karlsson, in Handbuch der Physik, edited by S. Flügge (Springer, Heidelberg, 1982), p. 215

  • D.W. Turner, C. Baker, A.D. Baker, C.R. Brundle, Molecular Photoelectron Spectroscopy (Wiley, New York, 1970)

  • J.W. Rabalais, Principles of Ultraviolet Photoelectron Spectroscopy (Wiley, New York, 1970)

  • J. Berkowitz, Photoabsorption, Photoionization and Photoelectron Spectroscopy (Academic Press, New York, 1979)

  • L.S. Cederbaum, J. Schirmer, W. Domcke, W. von Niessen, J. Phys. B 10, L549 (1977)

  • L.S. Cederbaum, W. Domcke, J. Schirmer, W. von Niessen, Physica Scripta 21, 481 (1980)

    Google Scholar 

  • L.S. Cederbaum, W. Domcke, J. Schirmer, W. von Niessen, Adv. Chem. Phys. 65, 115 (1986)

    Google Scholar 

  • F. Remacle, R.D. Levine, J. Amer. Chem. Soc. 122, 4048 (2000)

    Google Scholar 

  • F. Remacle et al., J. Phys. Chem. B 102, 7727 (1998)

  • F. Remacle, C.P. Collier, J.R. Heath, R.D. Levine, Chem. Phys. Lett. 291, 453 (1998)

    Google Scholar 

  • F. Remacle, R. Levine, J. Phys. Chem. B 105, 2153 (2001)

    Google Scholar 

  • F. Remacle, K. Beverly, J. Heath, R. Levine, J. Phys. Chem. B 106, 4116 (2002)

    Google Scholar 

  • One should remark here that not all the symmetries of the group DNh are spanned by the MO-symmetries. This is the case, for example, of the eigenstates with A2g or B2u of a six-dot nanoring, which cannot therefore be studied by photoionization

  • H. Köppel, W. Domcke, L.S. Cederbaum, Adv. Chem. Phys. 57, 59 (1984)

    Google Scholar 

  • I. Bâldea, H. Köppel, L.S. Cederbaum, Phys. Rev. B 55, 1481 (1997)

    Google Scholar 

  • I. Bâldea, H. Köppel, L.S. Cederbaum, Phys. Rev. B 69, 075307 (2004)

    Google Scholar 

  • D. Bullet, R. Haydock, V. Heine, M.J. Kelly, in Solid State Physics, edited by H. Erhenreich, F. Seitz, D. Turnbull (Academic, New York, 1980)

  • P. Fulde, Electron correlations in molecules and solids, in Springer Series in Solid-State Sciences (Springer-Verlag Berlin, Heidelberg, New York, 1991), Vol. 100

  • E. Dagotto, Rev. Mod. Phys. 66, 763 (1994)

    Google Scholar 

  • The fact that \(\vert \tilde{\Psi}_{k,\sigma}\rangle \equiv c_{k,\sigma}\vert \Phi \rangle\) is a state of well defined Sz(=±1/2) and S(=1/2) straightforwardly follows from the commutation relations of ck,σ and the spin operators, and the fact that \(\hat{S}_z \vert \Phi \rangle = \hat{S}_{+} \vert \Phi \rangle = 0\) (Φ is a singlet). The commutation relation \([\hat{S}_z, c_{k,\downarrow } ] = \frac{1}{2}c_{k,\downarrow}\) yields \(S_z\vert \tilde{\Psi}_{k,\downarrow} \rangle = + \frac{1}{2}\vert \tilde{\Psi}_{k,\downarrow} \rangle \). Similarly, because ck,↓ and the spin raising operator \(\hat{S}_{+}\) commute, one immediately gets \(S_{+}\vert \tilde{\Psi}_{k,\downarrow} \rangle = 0\) and thence \(\hat{S}^2 \vert \tilde{\Psi}_{k,\downarrow} \rangle = (\hat{S}_z^2 + \hat{S}_{-} \hat{S}_{+} + \hat{S}_{z})\vert \tilde{\Psi}_{k,\downarrow} \rangle = \frac{3}{4} \vert \tilde{\Psi}_{k,\downarrow} \rangle\)

  • A. Natan, Integrable models in condensed matter physics, in Series on Modern Condensed Matter Physics, Lecture Notes of ICTP Summer Course, edited by S. Lundquist, G. Morandi, Y. Lu (World Scientific Singapore, 1992), Vol. 6, p. 458

  • A. Natan, Integrable models in condensed matter physics (1994), eprint arXiv:cond-mat/9408101

  • E.H. Lieb, F.Y. Wu, Physica A: Statistical Mechanics and its Applications 321, 1 (2003)

    Google Scholar 

  • B.S. Shastry, Phys. Rev. Lett. 56, 1529 (1986)

    Google Scholar 

  • B. Shastry, J. Stat. Phys. 50, 57 (1988)

    Google Scholar 

  • H. Grosse, Lett. Math. Phys. 18, 151 (1989)

    Google Scholar 

  • M. Wadati, E. Olmedilla, Y. Akutsu, J. Phys. Soc. Jpn 56, 1340 (1987)

    Google Scholar 

  • E. Olmedilla, M. Wadati, Phys. Rev. Lett. 60, 1595 (1988)

    Google Scholar 

  • P.B. Ramos, M.J. Martins, J. Phys. A: Mathematical and General 30, L195 (1997)

  • C.H. Bennett, H.J. Bernstein, S. Popescu, B. Schumacher, Phys. Rev. A 53, 2046 (1996)

  • G.C. Ghirardi, L. Marinatto, Phys. Rev. A 70, 012109 (2004)

    Google Scholar 

  • A.L. Fetter, J.D. Walecka, Quantum Theory of Many Particle Systems (McGraw Hill, New York, 1971)

  • The bright diabatic state approximates the mate with significant spectroscopic factor of a pair of states involved in an avoided crossing. For instance, in Figure [SEE TEXT], it describes the state 1 for d<1.765 and the state 2 for d>1.765

  • Unless d is very close to unity, using the SCF-ground state \(\vert \Phi_{SCF}\rangle\) instead of \(\vert \Phi \rangle\) is a very poor approximation, a fact easily understandable in view of the strong correlations

  • L.D. Landau, Sov. Phys. JETP 3, 920 (1956)

    Google Scholar 

  • L.D. Landau, Sov. Phys. JETP 5, 101 (1957)

    Google Scholar 

  • L.D. Landau, Sov. Phys. JETP 8, 70 (1959)

    Google Scholar 

  • T. Åberg, Phys. Rev. A 2, 1726 (1970)

  • O.J. Heilmann, E.H. Lieb, Annals of the New York Academy of Sciences 172, 583 (1971)

    Google Scholar 

  • E.A. Yuzbashyan, B.L. Altshuler, B.S. Shastry, J. Phys. A: Mathematical and General 35, 7525 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Bâldea.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bâldea, I., Cederbaum, L. & Schirmer, J. Intriguing electron correlation effects in the photoionization of metallic quantum-dot nanorings. Eur. Phys. J. B 69, 251–264 (2009). https://doi.org/10.1140/epjb/e2009-00150-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00150-3

PACS

Navigation