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Abstract. We derive the generalized Fokker-Planck equation associated with the Langevin equation (in
the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an
arbitrary distribution of the increments of the noise generating process. We explicitly consider this equation
for various specific types of noises, including Poisson white noise and Lévy stable noise, and show that it
reproduces all Fokker-Planck equations that are known for these noises. Exact analytical, time-dependent
and stationary solutions of the generalized Fokker-Planck equation are derived and analyzed in detail for
the cases of a linear, a quadratic, and a tailored potential.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion – 05.10.Gg
Stochastic analysis methods – 02.50.-r Probability theory, stochastic processes, and statistics

1 Introduction

Introduced just 100 years ago [1], the Langevin equation
has become one of the most important and powerful tools
for studying noise phenomena in systems coupled to a fluc-
tuating environment [2]. The main advantage of this equa-
tion is that it provides a physically transparent and mathe-
matically tractable description of the stochastic dynamics
of such systems. The Langevin approach is especially ef-
fective if the noise that describes the action of the environ-
ment on the system can be represented as a time deriva-
tive, in the sense of generalized functions, of a stationary
process with independent increments on non-overlapping
intervals. In this case the solutions of the Langevin equa-
tion belong to the class of Markov processes whose prop-
erties are well known (see, e.g., Refs. [3–6]). The station-
ary processes with independent increments and zero initial
state constitute a class of Lévy processes [7]. For brevity,
we call the Lévy process, whose derivative produces a
given noise, the noise generating process.

A large variety of physical, biological, financial and
other systems is successfully described by the overdamped
Langevin equation, i.e., the first-order stochastic differen-
tial equation. One of the main statistical characteristics
of these systems is the probability density of the solution
of this Langevin equation. If the noise results from the
noise generating process, then the solution possesses the
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Markovian property and the probability density satisfies a
closed equation. Sometimes this equation is called the dif-
ferential Chapman-Kolmogorov equation [8]. On the other
hand, it is referred to as the Fokker-Planck equation for
some particular cases. Specifically, a Gaussian distribu-
tion of the increments of the noise generating process cor-
responds to the ordinary Fokker-Planck equation [4–6],
and heavy-tailed stable distributions to the fractional
Fokker-Planck equation [9–14]. In order to capture these
important cases, we call the closed equation for the proba-
bility density that corresponds to an arbitrary distribution
of the increments the generalized Fokker-Planck equation.
We have shown recently [15] that for additive noise the
generalized Fokker-Planck equation can be represented in
a unified way through the characteristic function of the
noise generating process. Since the form and coefficients
of this equation depend fundamentally on the distribu-
tion of the increments of the noise generating process, it
provides a useful tool for studying the effects of different
noises.

The aim of this paper is twofold. The first is to de-
rive the generalized Fokker-Planck equation that corre-
sponds to the overdamped Langevin equation driven by
multiplicative noise with an arbitrary distribution of the
increments of the noise generating process. The second is
to solve this equation for specific cases and, on this basis,
to study the distinctive effects of different noises on the
system.
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The paper is organized as follows. In Section 2
we discuss the overdamped Langevin equation driven
by multiplicative noise resulting from the noise gener-
ating process. In Section 3 we derive the generalized
Fokker-Planck equation associated with this Langevin
equation in terms of the transition probability den-
sity and characteristic function of the noise generat-
ing process. To confirm the validity of this equation,
we consider in Section 4 various noises, including
Poisson white and Lévy stable noises, for which the
corresponding generalized Fokker-Planck equations are
known. Several exact solutions of the generalized
Fokker-Planck equation are derived in Section 5. In Sec-
tion 6 we summarize our results.

2 Overdamped Langevin equation

The temporal evolution of the relevant degrees of freedom
of dynamical systems that interact with a fluctuating en-
vironment is often described by the (dimensionless) over-
damped Langevin equation

ẋ(t) = f(x(t), t) + g(x(t), t)ξ(t). (1)

For different systems the variables in this equation have
different meanings, but to be concrete we will call x(t)
[x(0) = 0] a particle coordinate, f(x, t)=−∂U(x, t)/∂x a
force field, U(x, t) an external deterministic potential, ξ(t)
a random force (noise) resulting from a fluctuating envi-
ronment, and g(x, t) a multiplicative noise term. Under
certain conditions (see, e.g., Refs. [4,16]) the ‘real’ noise
ξ(t) with finite correlation time can be approximated by
an idealized noise that effectively captures all the essential
noise effects and turns x(t) into a Markov process, with
the result that many of these effects can be described an-
alytically.

Because of the singular character of the idealized noise,
equation (1) has to be interpreted with care. The start-
ing point relies on the fact [17] that this noise is the
time derivative, in the sense of generalized functions,
of the noise generating process η(t). According to this,
the increment δη(t) = η(t + τ) − η(t) of η(t) is defined
as the time integral, δη(t) =

∫ t+τ

t
dt′ξ(t′), in the sense

of convergence in distribution. Therefore, the increment
δx(t) = x(t + τ)− x(t) of the particle coordinate during a
time interval τ (τ → 0) can be written in the form

δx(t) = f(x(t), t)τ + g(x(t), t)δη(t), (2)

which defines the meaning of equation (1) in the Ito in-
terpretation [18] (see also Refs. [2,4–6]).

For a fixed τ , the distribution of the increments δη(jτ)
(j = 0, 1, 2, . . .) is completely described by the transition
probability density p(ηj+1, τ |ηj), where ηj+1 and ηj de-
note the possible values of η(jτ + τ) and η(jτ), respec-
tively. These densities are properly normalized,

∫ ∞
−∞ dηj+1

× p(ηj+1, τ |ηj) = 1, and satisfy the following condition
limτ→0 p(ηj+1, τ |ηj) = δ(Δη), where δ(·) stands for the
Dirac δ function and Δη = ηj+1 − ηj . Moreover, if the

first moment of η(jτ + τ) exists, it is assumed to be zero,
i.e.,

∫ ∞
−∞ dηj+1ηj+1p(ηj+1, τ |ηj) = 0.

The noise generating process, i.e., the station-
ary Markov process η(t) = limτ→0

∑[t/τ ]−1
j=0 δη(jτ)

with η(0) = 0 and [t/τ ] denoting the integer
part of t/τ , is also completely defined by the tran-
sition probability density p(ηj+1, τ |ηj). We note in
this regard that all transition probability densities of
the form p(ηj+l, lτ |ηj) (l = 2, 3, . . .) can be ex-
pressed through p(ηj+1, τ |ηj) by using the Chapman-
Kolmogorov equation [3–5]. In particular, for l = 2 it
yields p(ηj+2, 2τ |ηj) =

∫ ∞
−∞ dηj+1p(ηj+2, τ |ηj+1)p(ηj+1,

τ |ηj). Thus, the statistical properties of solutions of
the Langevin equation (1) can be characterized by
p(ηj+1, τ |ηj) as well. Next, for simplicity, we additionally
assume that p(ηj+1, τ |ηj) = p(Δη, τ).

If, for example, the transition probability density is
Gaussian, i.e.,

p(Δη, τ) =
e−Δη2/(4Dτ)

√
4πDτ

, (3)

then η(nτ) =
∑n−1

j=0 δη(jτ) is a discrete-time Wiener pro-
cess, which is fully characterized by two parameters,

〈δη(jτ)〉 = 0, 〈δη(jτ) δη(lτ)〉 = 2Dδjlτ. (4)

The angular brackets denote averaging over the incre-
ments δη(jτ), and δnm is the Kronecker symbol. These for-
mulas are the discrete-time versions of the mean 〈ξ(t)〉 = 0
and the correlation function 〈ξ(t)ξ(t′)〉 = 2Dδ(t − t′) of
a Gaussian white noise ξ(t) of intensity D. Thus equa-
tions (2) and (4) completely specify the Langevin equa-
tion (1) driven by multiplicative Gaussian white noise [4].

To derive the Fokker-Planck equation, it is typically
assumed that the first two moments of δη(jτ) exist [3,6].
However, if p(Δη, τ) is a heavy-tailed function of Δη, then
the second moment does not exist. In this case, the deriva-
tion of the Fokker-Planck equation that corresponds to
the Langevin equation (1) must be based solely on equa-
tion (2). We emphasize that noises characterized by heavy-
tailed transition probability densities p(Δη, τ) differ qual-
itatively from those characterized by p(Δη, τ) with finite
variances. Specifically, the latter have a frequency inde-
pendent power spectral density

∫ ∞
−∞ dt e−iωt〈ξ(0)ξ(t)〉 (ω

is the frequency) and consequently they are called white
noises. In contrast, the power spectrum of the former does
not exist. Nevertheless, they are a very useful tool for
studying an important class of random processes that ex-
hibit rare but large jumps.

3 Generalized Fokker-Planck equation

We define the probability density of the particle coordi-
nate x(t) in the usual way:

P (x, t) = 〈δ(x − x(t))〉. (5)
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To derive the evolution equation for this probability den-
sity, we need to be able to express the average values of
F (x(t)) and F (x(t), δη(t)) in terms of P (x, t); the func-
tions F (x) and F (x, y) are assumed to be determinis-
tic. Keeping in mind the above definition of averaging,
〈F (x(t))〉 means averaging F (x(t)) over all increments
δη(jτ) with j = 0, 1, . . . , [t/τ ] − 1 and τ → 0. It is ob-
vious from equations (2) and (5) that the result can be
represented as an average with respect to the distribution
of x(t), i.e.,

〈F (x(t))〉 =
∫ ∞

−∞
dxF (x)P (x, t). (6)

In order to express 〈F (x(t), δη(t))〉 in terms of P (x, t),
we use a two-stage averaging procedure [19]. Since the
variables x(t) and δη(t) are statistically independent and
distributed according to the probability densities P (x, t)
and p(Δη, τ), respectively, we readily obtain

〈F (x(t), δη(t))〉 =
∫ ∞

−∞
dxP (x, t)

∫ ∞

−∞
dy F (x, y)p(y, τ).

(7)
To proceed, we introduce the Fourier transform, Pk(t), of
P (x, t) according to the formula

F{u(x)} ≡ uk =
∫ ∞

−∞
dx e−ikxu(x), (8)

and find, using definition (5), that Pk(t) = 〈e−ikx(t)〉.
Equation (2) implies that for τ → 0 the increment of
Pk(t), i.e., δPk = Pk(t + τ) − Pk(t), can be written in
the form

δPk = −ikτ〈e−ikx(t)f(x(t), t)〉

+〈e−ikx(t)(e−ikg(x(t),t)δη(t) − 1)〉. (9)

In accordance with (6) and (8), the first term on the right-
hand side of equation (9) reduces to

ik〈e−ikx(t)f(x(t), t)〉 = F
{

∂

∂x
f(x, t)P (x, t)

}

, (10)

and equation (7) for the second term gives

〈e−ikx(t)(e−ikg(x(t),t)δη(t) − 1)〉 =
∫ ∞

−∞
dy e−iky [pkg(y,t)(τ) − 1]P (y, t), (11)

where pk(τ) = F{p(x, τ)} = 〈e−ikδη(t)〉 is the characteris-
tic function of δη(t).

Substituting (10) and (11) into equation (9), dividing
it by τ and taking the limit τ → 0, we obtain the following
equation:

∂

∂t
Pk(t) = −F

{
∂

∂x
f(x, t)P (x, t)

}

+
∫ ∞

−∞
dy e−ikyφkg(y,t)P (y, t) (12)

with
φk = lim

τ→0

1
τ

[pk(τ) − 1]. (13)

Since the transition probability density p(Δη, τ) is nor-
malized, i.e., p0(τ) = 1, the limit (13) must satisfy the
condition φ0 = 0. If k �= 0, then there exist three differ-
ent cases, depending on how quickly pk(τ) − 1 tends to
zero as τ → 0. First, if pk(τ) − 1 = o(τ), then φk = 0
and the noise does not effect the system at all. Second,
if pk(τ) − 1 tends to zero slower than τ , then |φk| = ∞,
i.e., the influence of the noise is so strong that the sys-
tem relaxes instantaneously to the final state. Finally, the
case we are interested in corresponds to pk(τ)−1 = O(τ),
i.e., 0 < |φκ| < ∞ and the noise acts on the system in a
non-trivial way.

We apply the inverse Fourier transform, defined as

F−1{uk} ≡ u(x) =
1
2π

∫ ∞

−∞
dk eikxuk, (14)

to equation (12). Using the definition (13), we obtain

F−1{e−ikyφkg(y,t)} =
1

|g(y, t)|φ
(

x − y

g(y, t)

)

, (15)

where the function

φ(x) = lim
τ→0

1
τ

[p(x, τ) − δ(x)] (16)

is a special characteristic of p(Δη, τ) for τ → 0 that de-
scribes the influence of noise on the system. Therefore,
the desired generalized Fokker-Planck equation that cor-
responds to the Langevin equation (1) driven by multi-
plicative noise, which results from an arbitrary noise gen-
erating process, takes the form

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t)

+
∫ ∞

−∞
dy

P (y, t)
|g(y, t)|φ

(
x − y

g(y, t)

)

. (17)

In accordance with the definition (5), the solution of this
equation must be normalized and satisfy the initial con-
dition P (x, 0) = δ(x).

To gain more insight into the connection between the
generalized Fokker-Planck equation and the properties of
the noise, we introduce the characteristic function Sk =
〈e−ikη(1)〉 of the noise generating process η(t) at t = 1.
With the formula η(1) = limτ→0

∑[1/τ ]−1
j=0 δη(jτ), it can

be rewritten as Sk = limτ→0(pk(τ))[1/τ ]. Then replacing
pk(τ) by 1+ τφk and taking into account that limε→0(1+
ε)1/ε = e, we find Sk = eφk , i.e., φk = ln Sk. Thus, from
equation (12) we obtain an alternative representation of
the generalized Fokker-Planck equation:

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t)

+F−1

{∫ ∞

−∞
dy e−ikyP (y, t) ln Skg(y,t)

}

.

(18)
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In the particular case of additive noise, where g(x, t) = 1,
equation (12) becomes

∂

∂t
Pk(t) = −F

{
∂

∂x
f(x, t)P (x, t)

}

+ Pk(t)φk, (19)

and the generalized Fokker-Planck equation (18) simplifies
to the equation

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) + F−1{Pk(t) ln Sk}, (20)

which was derived in reference [15].
We note that the problem of deriving the generalized

Fokker-Planck equation that corresponds to the Langevin
equation (1) has been considered earlier in terms of the
Lévy measure of the noise generating process [20–23].
In contrast, the generalized Fokker-Planck equations (18)
and (20) are derived here in terms of the characteristic
function Sk of this process at t = 1. Since the stationary
processes with independent increments are infinitely divis-
ible, lnSk can be represented by the Lévy-Khintchine for-
mula that connects Sk with the Lévy measure [7]. Hence,
both approaches are, in fact, equivalent and lead to dif-
ferent forms of the generalized Fokker-Planck (see also
Sect. 4.5). It seems, however, that the above approach
which deals with the transition probability density of the
noise generating process is more convenient for appli-
cations. Indeed, the transition probability density com-
pletely describes the noise generating process and, in ac-
cordance with (13) and Sk = eφk , explicitly represents the
characteristic function Sk. At the same time, there is no
simple way to invert the Lévy-Khintchine formula, i.e., to
express the Lévy measure through Sk [24].

4 Special cases of the generalized
Fokker-Planck equation

In order to confirm the validity of equations (17), (18)
and (20) and to demonstrate their usefulness, we con-
sider several specific noises for which the corresponding
Fokker-Planck equations associated with the Langevin
equation (1) are already known.

4.1 Gaussian white noise

The transition probability density p(Δη, τ) for Gaussian
white noise is given by formula (3). Accordingly, pk(τ) =
e−Dτk2

, φk = −Dk2, and Sk = e−Dk2
. Then, taking into

account that F−1{Pk(t)k2} = −∂2P (x, t)/∂x2, we find
that in the case of additive Gaussian white noise equa-
tion (20) reduces indeed to the ordinary Fokker-Planck
equation [4–6]

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) + D

∂2

∂x2
P (x, t). (21)

If the Gaussian white noise is multiplicative, then
φkg(y,t) = −Dk2g2(y, t) and

F−1

{∫ ∞

−∞
dy e−ikyφkg(y,t)P (y, t)

}

=

− DF−1{k2F{g2(x, t)P (x, t)}}

= D
∂2

∂x2
g2(x, t)P (x, t). (22)

Applying the inverse Fourier transform to equation (12)
and using the above result, we again obtain the ordinary
Fokker-Planck equation [4–6]

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) + D

∂2

∂x2
g2(x, t)P (x, t),

(23)
which corresponds to the Ito interpretation of the
Langevin equation (1) driven by multiplicative Gaussian
white noise. We note that the last equation can also be
derived from equation (17) with φ(·) = D∂2δ(·)/∂x2 for
this case.

4.2 Poisson white noise

As a second example we consider Poisson white noise, i.e.,
a random sequence of δ-pulses, defined as [25,26]

ξ(t) =
n(t)∑

i=1

ziδ(t − ti). (24)

Here n(t) is a Poisson counting process with the proba-
bility P (n(t) = n) = (λt)ne−λt/n! of n ≥ 0 arrivals in
the interval (0, t], λ is the rate of the process, ti are the
(random) arrival times of this process, and zi are inde-
pendent random variables of zero mean distributed with
the same probability density q(z). It is assumed also that
ξ(t) = 0 if n(t) = 0. The noise generating process η(t)
is a step-wise constant Markov process whose increments
δη(t) =

∫ t+τ

t
dt′ξ(t′) are given by

δη(t) =

{
0, if n(τ) = 0,
∑n(τ)

i=1 zi, if n(τ) ≥ 1.
(25)

In order to find the transition probability density
p(Δη, τ), we use the definition p(Δη, τ) = 〈δ(Δη− δη(t))〉
which, together with (25), yields

p(Δη, τ) = P0(τ) δ(Δη) + W (Δη, τ). (26)

The first term on the right-hand side of this formula is the
probability density of δη(t) under the condition that none
of the δ-pulses occurred during the time interval τ . The
second term,

W (Δη, τ) =
∞∑

n=1

Pn(τ)
∫ ∞

−∞
...

∫ ∞

−∞
δ

(

Δη −
n∑

i=1

zi

)

×
n∏

j=1

q(zj) dzj , (27)
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represents the probability density of δη(t) under the con-
dition that at least one pulse occurs during this time in-
terval. Taking the probabilities Pn(τ) = P (n(τ) = n) with
linear accuracy in τ , i.e., P0(τ) = 1−λτ , P1(τ) = λτ , and
Pn≥2(τ) = 0, we obtain from formulas (26) and (27)

p(Δη, τ) = (1 − λτ) δ(Δη) + λτq(Δη). (28)

In accordance with the definition (16), for this probability
density φ(x) = λ[q(x)−δ(x)], and the generalized Fokker-
Planck equation (17) reads

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) − λP (x, t)

+λ

∫ ∞

−∞
dy

P (y, t)
|g(y, t)| q

(
x − y

g(y, t)

)

. (29)

For g(x, t) = 1, i.e., in the case of additive Poisson
white noise, this equation is consistent with those re-
ported previously [25–28]. Of course, since Sk = e−λ(1−qk),
q(x) = F−1{qk} and δ(x) = F−1{1}, the same form of the
equation (29) (with g(x, t) = 1) follows from equation (20)
as well. We note that a wide class of white noises, which
are represented by random sequences of δ-pulses with a
mean number λ of pulses per unit time, is characterized
by the same transition probability density (28). Therefore,
the generalized Fokker-Planck equation (29) is also valid
for all these noises.

4.3 Compound noise

Next we consider the noise ξ(t) =
∑M

m=1 ξm(t) composed
of a set of independent noises ξm(t). In this case the noise
generating process can be written in the form

η(t) = lim
τ→0

M∑

m=1

[t/τ ]−1∑

j=0

δηm(jτ). (30)

Because of the statistical independence of the increments
δηm(jτ) of the partial generating processes ηm(t), the
characteristic function Sk = 〈e−ikη(1)〉 of η(1) is expressed
through the characteristic functions Smk = 〈e−ikηm(1)〉 of
ηm(1) as follows: Sk =

∏M
m=1 Smk. Therefore, in the case

of additive compound noise the generalized Fokker-Planck
equation (20) becomes

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t)

+
M∑

m=1

F−1{Pk(t) ln Smk}. (31)

In particular, if M = 2 and ξ1(t) and ξ2(t) are Gaussian
and Poisson white noises, respectively, then equation (31)
reduces to [8]

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) + D

∂2

∂x2
P (x, t)

−λP (x, t) + λ

∫ ∞

−∞
dyP (y, t) q(x − y). (32)

4.4 Lévy stable noise

The generalized central limit theorem [29] implies that for
a wide class of properly scaled transition probability den-
sities p(Δη, τ), the characteristic function Sk corresponds
to Lévy stable distributions, Sk = Sk(α, β, γ, ρ). It is well
known [30] that Sk(α, β, γ, ρ) depends on four parame-
ters: an index of stability α ∈ (0, 2], a skewness parameter
β ∈ [−1, 1], a scale parameter γ ∈ (0,∞), and a location
parameter ρ ∈ (−∞,∞). Assuming in accordance with
the initial condition P (x, 0) = δ(x) that ρ = 0 and ex-
cluding from consideration the singular case when α = 1
and β �= 0 simultaneously (in this case |φk| = ∞), we
obtain Sk = Sk(α, β, γ), where [30]

Sk(α, β, γ) = exp
[
−γ|k|α

(
1 + iβ sgn(k) tan

πα

2

)]
. (33)

In the following we assume for simplicity that the condi-
tion g(y, t) > 0 holds for all y and t. In this case

ln Skg(y,t) = gα(y, t) ln Sk(α, β, γ), (34)

and the generalized Fokker-Planck equation (18) becomes

∂

∂t
P (x, t)=− ∂

∂x
f(x, t)P (x, t)+F−1{Gk(t) lnSk(α, β, γ)},

(35)
where

Gk(t) = F{gα(x, t)P (x, t)}. (36)

Equation (35) can be rewritten in a form containing the
Riemann-Liouville derivatives defined as [31]

sD
σ
±h(x) =

(±1)n

Γ (n − σ)
dn

dxn

∫ s±x

0

dy h(x∓y) yn−σ−1, (37)

where sD
σ
+ and sD

σ
− denote the operators of the left- and

right-hand side derivatives of the order σ (0 < σ < ∞),
respectively. The function h(x) is defined on the interval
[−s, s], n = 1 + [σ], and Γ (z) is the Gamma function.
Using the characteristic function (33), we first represent
its natural logarithm as follows:

ln Sk(α, β, γ) = −γ
(1 + β)(ik)α + (1 − β)(−ik)α

2 cos(πα/2)
. (38)

Taking the Fourier transform of equation (37) with h(x) =
gα(x, t)P (x, t), we find

(±ik)αGk(t) = F{∞Dα
±gα(x, t)P (x, t)}, (39)

and combining this result with (38) we obtain the frac-
tional Fokker-Planck equation

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) − γ

2 cos(πα/2)
[(1 + β)

×∞Dα
+ + (1 − β)∞Dα

−] gα(x, t)P (x, t).
(40)
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Equation (40) reproduces all known forms of the fractional
Fokker-Planck equation that corresponds to the Langevin
equation (1) driven by Lévy stable noise. It can be easily
rewritten in a form containing the Riesz derivative defined
as [31]

∂α

∂|x|α h(x) = −F−1{|k|αhk}. (41)

With the help of this definition and the relations

(∞Dα
+ +∞D−)h(x) = 2 cos

πα

2
F−1{|k|αhk} (42)

and

(∞Dα
+ −∞D−)h(x) = 2 sin

πα

2
∂

∂x
F−1{|k|α−1hk}, (43)

which follow directly from the Fourier representation
∞Dα

±h(x) = F−1{(±ik)αhk} of the Riemann-Liouville
derivatives, equation (40) reduces to

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t) + γ

∂α

∂|x|α gα(x, t)P (x, t)

+ γβ tan
πα

2
∂

∂x

∂α−1

∂|x|α−1
gα(x, t)P (x, t).

(44)

It is obvious that for α = 2 this equation takes the form
of the ordinary Fokker-Planck equation (23) with D = γ.
For α < 2, various special cases of equation (44) have been
given previously in references [9–14].

4.5 Infinite divisibility of the noise generating process

It is well known (see, e.g., Refs. [7,24]) that any stationary
process with independent increments, including the noise
generating process, is infinitely divisible. This means that
the condition Sk =

(
S

(n)
k

)n with S
(n)
k being a characteris-

tic function holds for each positive integer n. In this case,
ln Sk can be represented in the form [24]

ln Sk =
∫ ∞

−∞
dz ρ(z)

e−ikz − 1 + ik sin z

z2
, (45)

where ρ(z) is the density of the Lévy measure of η(1). Ac-
cordingly, with the integral representation δ(·) = (1/2π)
×∫ ∞

−∞ dk eik(·) of the δ function, the last term in equation
(18) can be written as follows:

F−1

{∫ ∞

−∞
dy e−ikyP (y, t) lnSkg(y,t)

}

=
∫ ∞

−∞
dz

ρ(z)
z2

∫ ∞

−∞
dy

(

δ[x − y − zg(y, t)]

− δ(x − y) + sin z
∂

∂x
g(x, t)δ(x − y)

)

P (y, t). (46)

Evaluating the integral over y and using the formula

∫ ∞

−∞
dy δ[x − y − zg(y, t)]P (y, t) =

∞∑

n=0

(−z)n

× ∂n

∂xn
gn(x, t)P (x, t) ≡ exp

(

− z
∂

∂x
g(x, t)

)

P (x, t),

(47)

which follows from the Taylor expansion δ[x − y −
zg(y, t)] =

∑∞
n=0(−1)ngn(y, t)(∂/∂x)nδ(x− y), we obtain

the generalized Fokker-Planck equation

∂

∂t
P (x, t) = − ∂

∂x
f(x, t)P (x, t)

+
∫ ∞

−∞
dz

ρ(z)
z2

[

exp
(

− z
∂

∂x
g(x, t)

)

−1 + sin z
∂

∂x
g(x, t)

]

P (x, t), (48)

which was derived in reference [22] using a functional ap-
proach.

5 Exact solutions of the generalized
Fokker-Planck equation

An important aspect of the generalized Fokker-Planck
equation (20), which corresponds to the Langevin equa-
tion (1) driven by additive noise, is that in some cases it
can be solved for all characteristic functions Sk, i.e., for
all noises represented by a time derivative of the noise
generating process. This provides a unique opportunity to
study in detail the effect of different noises on the same
system. In Sections 5.1 and 5.2, we consider this problem
for overdamped particles in linear and quadratic poten-
tials, respectively. The stationary solution of the general-
ized Fokker-Planck equation (18) in the case of multiplica-
tive Lévy stable noise and a tailored potential is presented
in Section 5.3.

5.1 Linear potential

In this case U(x, t) = U(x) = −f0x (f0 is a constant force
acting on a particle) and, since F{∂f(x, t)P (x, t)/∂x} =
ikf0Pk(t), equation (12) becomes

∂

∂t
Pk(t) = (−ikf0 + φk)Pk(t). (49)

The solution of this equation, satisfying the initial con-
dition Pk(0) = 1 that follows from the initial condition
P (x, 0) = δ(x), is given by

Pk(t) = exp(−ikf0t + φkt). (50)

Therefore, using the relation Sk = eφk , we can write the
solution of the generalized Fokker-Planck equation (20) as

P (x, t) = F−1{St
k e−iktf0}. (51)
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In order to study how the behavior of free particles, when
f0 = 0, depends on the character of the noise, we cal-
culate the second moment 〈x2(t)〉 =

∫ ∞
−∞ dxx2P (x, t) of

the particle coordinate x(t). Using the solution (51) and
the integral formula δ′′(k) = −(1/2π)

∫ ∞
−∞ dxx2eikx, we

obtain

〈x2(t)〉 = − d2

dk2
St

k

∣
∣
∣
k=0

. (52)

Since in the case of free particles x(t) = η(t), we have Sk =
Pk(1), and the normalization of P (x, t) yields S0 = 1.
Moreover, if the first moment of x(t) exists, it is assumed
to be zero, i.e., dSk/dk|k=0 = 0. With these conditions,
formula (52) reduces to

〈x2(t)〉 = 〈x2(1)〉 t. (53)

If the term 〈x2(1)〉, which can be represented as 〈x2(1)〉 =
limτ→0〈

[ ∑[1/τ ]−1
j=0 δη(jτ)

]2〉 = limτ→0〈δη2(0)〉/τ with
〈δη2(0)〉 = 〈[η(τ)− η(0)]2〉 =

∫ ∞
−∞ dy y2p(y, τ), exists, i.e.,

〈δη2(0)〉 = O(τ), then the noise is white and leads to
normal diffusion of particles. In particular, 〈x2(t)〉 = 2Dt
for Gaussian white noise, and 〈x2(t)〉 = λ t

∫ ∞
−∞ dy y2q(y)

for Poisson white noise. If the transition probability den-
sity p(Δη, τ) has heavy tails, i.e., 〈δη2(0)〉 = ∞, then
P (x, t) evolves in such a way that 〈x2(t)〉 does not exist.
Such behavior is displayed, e.g., by the probability den-
sity P (x, t) = F−1{St

k(α, β, γ)} of free particles driven
by Lévy stable noise with α ∈ (0, 2) [9]. While correlated
noise induces a variety of different diffusion regimes of
free particles [32], noise resulting from the noise generat-
ing process can only give rise to normal diffusive behavior
(if 〈δη2(0)〉 < ∞) or to non-diffusive behavior, character-
ized by a probability density P (x, t) with infinite second
moment (if 〈δη2(0)〉 = ∞).

5.2 Quadratic potential

In the case of a quadratic potential, where U(x, t) =
U(x) = bx2/2 (b > 0), equation (19) takes the form

∂

∂t
Pk(t) + bk

∂

∂k
Pk(t) = Pk(t)φk. (54)

Its general solution can be obtained via the method of
characteristics [33], for example, and reads

Pk(t) = exp
(

1
b

∫ k

0

dz
φz

z
+c1

)

Ψ

(
1
b

ln |k|+c2−t

)

, (55)

where Ψ(x) is an arbitrary function, and c1 and c2 are
constants of integration. Since Pk(0) = 1, the solution
(55) yields

Ψ

(
1
b

ln |k| + c2

)

= exp
(

− 1
b

∫ k

0

dz
φz

z
− c1

)

. (56)

Replacing k by ke−bt in this relation, we obtain

Ψ

(
1
b

ln |k| + c2 − t

)

= exp
(

− 1
b

∫ ke−bt

0

dz
φz

z
− c1

)

= exp
(

− 1
b

∫ k

0

dz
φze−bt

z
− c1

)

,

(57)

and substituting this result into (55), we find that

Pk(t) = exp
(

− 1
b

∫ k

0

dz
φze−bt − φz

z

)

. (58)

Finally, given that φk = lnSk, the time-dependent solu-
tion of equation (20), P (x, t) = F−1{Pk(t)}, can be rep-
resented in the form

P (x, t) = F−1

{

exp
(

− 1
b

∫ k

0

dz
1
z

ln
Sze−bt

Sz

)}

. (59)

We note that ln(Sze−bt/Sz) ∼ −btz d ln Sz/dz as b → 0.
Therefore

lim
b→0

1
b

∫ k

0

dz
1
z

ln
Sze−bt

Sz
= − ln St

k, (60)

and in the case of free particles, i.e, b = 0, the solution (59)
reduces to P (x, t) = F−1{St

k}. This result is confirmed by
the solution (51) with f0 = 0.

5.2.1 Poisson white noise

As a first application of the above results we consider
Poisson white noise. In this case φk = −λ(1 − qk), and
formula (58) yields

Pk(t) = exp
(

− λ

b

∫ k

0

dz
qze−bt − qz

z

)

. (61)

Next we assume that the probability density q(Δη) is ex-
ponential, i.e., q(Δη) = (r/2) e−r|Δη| with r > 0. This
implies that qk = r2(r2 + k2)−1,

∫ k

0

dz
qze−bt − qz

z
=

∫ k

0

dz
r2(1 − e−2bt)z

(r2 + z2)(r2 + z2e−2bt)

=
1
2

ln
r2 + k2

r2 + k2e−2bt
, (62)

and formula (61) takes the form

Pk(t) =
(

r2 + k2e−2bt

r2 + k2

) λ
2b

. (63)

For t → ∞ the time-dependent solution P (x, t) =
F−1{Pk(t)} of the generalized Fokker-Planck equa-
tion (20) tends to the stationary solution Pst(x) =
F−1{Pk(∞)}. Using the relation [34]
∫ ∞

0

dk
cos kx

(r2 + k2)s
=

√
π

Γ (s)

( |x|
2r

)s−1/2

Ks−1/2(r|x|), (64)
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where Re s > 0 and Kl(x) is the modified Bessel function
of the third kind (or Macdonald function) [35], we obtain

Pst(x) =

√
2
π

r(r|x|)s−1/2

2sΓ (s)
Ks−1/2(r|x|) (65)

with s = λ/(2b). This is the so-called K-distribution,
which is one of the basic distributions describing the sta-
tistical properties of scattered waves [36]. It is interesting
to note that for s ≤ 1/2 the stationary probability den-
sity exhibits singular behavior near the bottom (x = 0) of
the potential well: Pst(x) ∝ 1/|x|1−2s if 0 < s < 1/2, and
Pst(x) ∝ − ln |x| if s = 1/2.

5.2.2 Lévy stable noise

In this case Sk = Sk(α, β, γ), and the characteristic func-
tion (33) implies that

ln
Sze−bt

Sz
= γ(1 − e−αbt)|z|α

(
1 + iβ sgn(z) tan

πα

2

)
.

(66)
Using this result and the integral formula

∫ k

0

dz
|z|α
z

[
sgn z

1

]

=
|k|α
α

[
sgnk

1

]

, (67)

we find that
∫ k

0

dz
1
z

ln
Sze−bt

Sz
=

γ

α
(1 − e−αbt)|k|α

×
(
1 + iβ sgn(k) tan

πα

2

)
, (68)

and the solution (59) reads

P (x, t) = F−1

{

Sk

(

α, β, γ
1 − e−αbt

αb

)}

. (69)

We note that special cases of this solution were known
previously. Specifically, the time-dependent solution for
symmetric Lévy stable noise (β = 0) was derived in ref-
erence [9], and the steady-state solution for asymmetric
Lévy stable noise in reference [37].

5.3 Tailored potential

As a third example we derive the stationary probability
density function Pst(x) for overdamped particles interact-
ing with a tailored potential

U(x) = c

∫ x

0

dy ygα(y) (70)

(c > 0) and driven by multiplicative Lévy stable noise
with g(x, t) = g(x) > 0. In this case f(x, t) = −cxgα(x),
and equation (35) reduces to

c
d

dx
xG(x) + F−1{Gk ln Sk(α, β, γ)} = 0, (71)

where G(x) = gα(x)Pst(x). By applying the Fourier trans-
form to equation (71), we arrive at the ordinary differential
equation

−ck
d

dk
Gk + Gk ln Sk(α, β, γ) = 0, (72)

whose integration yields

ln
Gk

G0
=

1
c

∫ k

0

dz
1
z

ln Sz(α, β, γ). (73)

Using the definition (33) and the integral formula (67), we
obtain

Gk = G0Sk(α, β, γ/αc), (74)

and so

Pst(x) = G0g
−α(x)F−1{Sk(α, β, γ/αc)}. (75)

To eliminate G0 = 〈gα(x(t))〉 from the solution (75), we
use the normalization condition

∫ ∞
−∞ dxPst(x) = 1, which

yields the desired probability density

Pst(x) =
g−α(x)F−1{Sk(α, β, γ/αc)}

∫ ∞
−∞ dx g−α(x)F−1{Sk(α, β, γ/αc)} . (76)

To the best of our knowledge, the above result is the first
stationary solution of the fractional Fokker-Planck equa-
tion (44), i.e., the generalized Fokker-Planck equation (18)
associated with the Langevin equation (1) driven by mul-
tiplicative Lévy stable noise.

6 Conclusions

We have derived a new form of the generalized
Fokker-Planck equation associated with the Langevin
equation for overdamped particles driven by multiplica-
tive noise which results from the noise generating pro-
cess whose independent increments have an arbitrary
distribution. The main advantage of this generalized
Fokker-Planck equation is that it accounts for the noise
action in a unified way, namely through the characteristic
function of the noise generating process at dimensionless
time t = 1. Since the characteristic function is completely
described by the transition probability density of the gen-
erating process, it is this density which ultimately deter-
mines the term in the generalized Fokker-Planck equation
that describes the effect of the noise on the dynamics of
the system. We have explicitly demonstrated this fact for
various noises, including the Poisson white noise and the
Lévy stable noise.

More importantly, we have solved the generalized
Fokker-Planck equation in the cases of linear and
quadratic potentials driven by an arbitrary additive noise.
A remarkable feature of these analytical solutions is that
they give an opportunity to examine the effects of different
noises on the same system. As an illustration, we have de-
rived and analyzed in detail the time-dependent and sta-
tionary solutions that correspond to the Poisson white and
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Lévy stable noises. Moreover, we have also presented the
analytical solution of the fractional Fokker-Planck equa-
tion that describes the stationary distribution of over-
damped particles in a specific potential driven by mul-
tiplicative Lévy stable noise.
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