Skip to main content
Log in

Effective field theory for spinor dipolar Bose Einstein condensates

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We show that the effective theory of long wavelength low energy behavior of a dipolar Bose-Einstein condensate(BEC) with large dipole moments (treated as a classical spin) can be modeled using an extended non-linear sigma model (NLSM) like energy functional with an additional non-local term that represents long ranged anisotropic dipole-dipole interaction. Minimizing this effective energy functional we calculate the density and spin-profile of the dipolar Bose-Einstein condensate in the mean-field regime for various trapping geometries. The resulting configurations show strong intertwining between the spin and mass density of the condensate, transfer between spin and orbital angular momentum in the form of Einstein-de Hass effect, and novel topological properties. We have also described the theoretical framework in which the collective excitations around these mean field solutions can be studied and discuss some examples qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A.A. Belavin, A.M. Polyakov, Pis’ma Zh. Eksp. Teor. Fiz. 22, 503 (1975) [SPIRES]; [JETP Lett. 22, 245 (1975)]

  • R. Rajaraman, Solitons and Instantons (North-Holland, Amsterdam, 1989)

  • U.A. Khawaja, H.C. Stoof, Nature 411, 918 (2001); J. Ruostekosky, J.R. Anglin, Phys. Rev. Lett. 86, 3934 (2001); R.A. Battye, N.R. Cooper, P.M. Sutcliffe, Phys. Rev. Lett. 88, 080401 (2002)

  • See for example, L.E. Sadler, J.M. Higbie, S.R. Leslie, M. Vengalattore, D.M. Stamper-Kurn, Nature (London) 443, 312 (2006)

    Google Scholar 

  • S.L. Sondhi, A. Karlhede, S.A. Kivelson, E.H. Rezayi, Phys. Rev. B 47, 16419 (1993)

    Google Scholar 

  • K. Moon, H. Mori, K. Yang, S.M. Girvin, A.H. MacDonald, L. Zheng, D. Yashioka, S.-C. Zhang, Phys. Rev. B 51, 5138 (1995)

    Google Scholar 

  • S. Ghosh, R. Rajaraman, Phys. Rev. B 63, 035304 (2001)

    Google Scholar 

  • T. Ohmi, K. Machida, J. Phys. Soc. Jpn 67, 1822 (1998)

    Google Scholar 

  • T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)

    Google Scholar 

  • D.M. Stamper-Kurn, M.R. Andrews, A.P. Chikkatur, S. Inouye, H.-J. Miesner, J. Stenger, W. Ketterle, Phys. Rev. Lett. 80, 2027 (1998)

    Google Scholar 

  • A. Görlitz, T.L. Gustavson, A.E. Leanhardt, R. Löw, A.P. Chikkatur, S. Gupta, S. Inouye, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 090401 (2003)

    Google Scholar 

  • A. Griesmaier et al., Phys. Rev. Lett. 94, 160401 (2005)

  • J. Stuhler et al., Phys. Rev. Lett. 95, 150406 (2005); A. Griesmaier et al., Phys. Rev. Lett. 97, 250402 (2006); S. Giovanazzi et al., Phys. Rev. A 74, 013621 (2005)

  • T. Lahaye et al., Nature 448, 672 (2007)

  • See for review, M.A. Baranov et al., Phys. Scr. T 102, 74 (2002)

    Google Scholar 

  • Y. Kawaguchi et al., Phys. Rev. Lett. 96, 080405 (2006); Y. Kawaguchi et al., Phys. Rev. Lett. 97, 130404 (2006); Y. Kawaguchi et al., Phys. Rev. Lett. 98, 110406 (2007)

  • S. Yi, H. Pu, Phys. Rev. Lett. 97, 020401 (2006)

    Google Scholar 

  • R. Cheng et al., J. Phys. B 38, 2569 (2005)

  • M. Vengalattore, S.R. Leslie, J. Guzman, D.M. Stamper-Kurn, Phys. Rev. Lett. 100, 170403 (2008)

    Google Scholar 

  • Austen Lamacraft, Phys. Rev. A 77, 063622 (2008)

  • L. Santos, T. Pfau, Phys. Rev. Lett. 96, 190404 (2006)

    Google Scholar 

  • R.B. Diener, T.-L. Ho, Phys. Rev. Lett. 96, 190405 (2006)

    Google Scholar 

  • M. Takahashi, S. Ghosh, T. Mizushima, K. Machida, Phys. Rev. Lett. 98, 260403 (2007)

    Google Scholar 

  • L. Fadeev, A. Niemi, Nature 387, 58 (1997); Also see E. Babaev, L. Fadeev, A. Niemi, Phys. Rev. B. 65, 100512 (2002) for stable three dimensional knotted solitons in a charged two-condensate Bose-Einstein systems

  • J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.-J. Miesner, A.P. Chikkatur, W. Ketterle, Nature (London) 396, 345 (1998)

    Google Scholar 

  • J.P. Burke, C.H. Greene, J.L. Bohn, Phys. Rev. Lett. 81, 3355 (1998)

    Google Scholar 

  • M.D. Barrett et al., Phys. Rev. Lett. 87, 010404 (2001)

  • N.N. Klausen, J.L. Bohn, C.H. Greene, Phys. Rev. A 64, 053602 (2001)

    Google Scholar 

  • For 87Rb (F=2), the two spin dependent interactions are 80 and 50 times smaller than the spin-independent one, T. Kuwamoto et al., Phys. Rev. A 69, 063604 (2004)

  • F.D.M. Haldane, Phys. Rev. Lett. 50, 1153 (1983)

    Google Scholar 

  • C.J. Pethick, H. Smith, in Bose-Einstein condensation in dilute gases (Cambridge University Press, Cambridge, 2002), Chap. 5, p. 576

  • See the special issue on ultracold polar molecules; Eur. Phys. J. D 31, 149 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ghosh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takahashi, M., Ghosh, S., Mizushima, T. et al. Effective field theory for spinor dipolar Bose Einstein condensates. Eur. Phys. J. B 68, 391–400 (2009). https://doi.org/10.1140/epjb/e2009-00016-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00016-8

PACS

Navigation