Skip to main content
Log in

Shape transformation transitions in a model of fixed-connectivity surfaces supported by skeletons

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

A compartmentalized surface model of Nambu and Goto is studied on triangulated spherical surfaces by using the canonical Monte Carlo simulation technique. One-dimensional bending energy is defined on the skeletons and at the junctions, and the mechanical strength of the surface is supplied by the one-dimensional bending energy defined on the skeletons and junctions. The compartment size is characterized by the total number L of bonds between the two-neighboring junctions and is assumed to have values in the range from L = 2 to L = 8 in the simulations, while that of the previously reported model is characterized by L = 1, where all vertices of the triangulated surface are the junctions. Therefore, the model in this paper is considered to be an extension of the previous model in the sense that the previous model is obtained from the model in this paper in the limit of L↦1. The model in this paper is identical to the Nambu-Goto surface model without curvature energies in the limit of L↦∞ and hence is expected to be ill-defined at sufficiently large L. One remarkable result obtained in this paper is that the model has a well-defined smooth phase even at relatively large L just as the previous model of L↦ 1. It is also remarkable that the fluctuations of surface in the smooth phase are crucially dependent on L; we can see no surface fluctuation when L≤ 2, while relatively large fluctuations are seen when L≥ 3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H. Hotani, J. Mol. Biol. 178, 113 (1984)

    Google Scholar 

  • K. Akiyoshi, A. Itaya, S.M. Nomura, N. Ono, K. Yoshikawa, FEBS Lett. 534, 33 (2003)

    Google Scholar 

  • U. Seifert, Fluid Vesicles, in Lecture Notes: Physics Meets Biology. From Soft Matter to Cell Biology (35th Spring Scool, Institute of Solid State Research, Forschungszentrum Jülich, 2004)

  • H.-G. Dobereiner, U. Seifert, Eurpphys. Lett. 36, 325 (1996)

    Google Scholar 

  • D. Nelson, The Statistical Mechanics of Membranes and Interfaces, Statistical Mechanics of Membranes and Surfaces, edited by D. Nelson, T. Piran, S. Weinberg, 2nd edn (World Scientific, 2004), pp. 1–16

  • G. Gompper, M. Schick, Self-assembling Amphiphilic Systems: Phase Transitions and Critical Phenomena 16, edited by C. Domb, J.L. Lebowitz (Academic Press, 1994), pp. 1 - 176

  • M. Bowick, A. Travesset, The Statistical Mechanics of Membrane, Phys. Rep. 344, 255 (2001)

  • L. Peliti, S. Leibler, Phys. Rev. Lett. 54, 1690 (1985)

    Google Scholar 

  • F. David, E. Guitter, Europhys. Lett, 5, 709 (1988)

    Google Scholar 

  • M. Paczuski, M. Kardar, D.R. Nelson, Phys. Rev. Lett. 60, 2638 (1988)

    Google Scholar 

  • U. Seifert, K. Berndl, R. Lipowsky, Phys. Rev. A 44, 1182 (1991)

    Google Scholar 

  • E. Evans, Biophys. J. 14, 923 (1974)

    Google Scholar 

  • M. Jaric, U. Seifert, W. Wintz, M. Wortis, Phys. Rev. E 52, 6623 (1995)

    Google Scholar 

  • G. Gompper, D.M. Kroll, in Statistical Mechanics of Membranes and Surfaces, edited by D. Nelson, T. Piran, S. Weinberg 2nd edn. (World Scientific, 2004), p. 359

  • W. Helfrich, Z. Naturforsch, 28c, 693 (1973)

  • A.M. Polyakov, Nucl. Phys. B 268, 406 (1986)

    Google Scholar 

  • H. Kleinert, Phys. Lett. B 174, 335 (1986)

    Google Scholar 

  • Y. Kantor, D.R. Nelson, Phys. Rev. A 36, 4020 (1987)

    Google Scholar 

  • J. Ambjorn, A. Irback, J. Jurkiewicz, B. Petersson, Nucl. Phys. B 393, 571 (1993)

    Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 45, 377 (2005)

    Google Scholar 

  • J-P. Kownacki, H.T. Diep, Phys. Rev. E 66, 066105 (2002)

    Google Scholar 

  • H. Koibuchi, T. Kuwahata, Phys. Rev. E 72, 026124 (2005)

    Google Scholar 

  • I. Endo, H. Koibuchi, Nucl. Phys. B 732, 426 (2006)

    Google Scholar 

  • H. Koibuchi, Z. Sasaki, K. Shinohara, Phys. Rev. E 70, 066144 (2004)

    Google Scholar 

  • H. Koibuchi, N. Kusano, A. Nidaira, Z. Sasaki, K. Suzuki, Eur. Phys. J. B 42, 561 (2004)

    Google Scholar 

  • H. Koibuchi, J. Stat. Phys. 127, 457 (2007)

    Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 57, 321 (2007)

    Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 59, 55 (2007)

    Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 59, 405 (2007)

    Google Scholar 

  • H. Koibuchi, Phys. Rev. E 75, 051115 (2007)

    Google Scholar 

  • H. Koibuchi, Eur. Phys. J. B 52, 265 (2006)

    Google Scholar 

  • J. Ambjorn, B. Durhuus, J. Frohlich, Nucl. Phys. B 257, 433 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Koibuchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koibuchi, H. Shape transformation transitions in a model of fixed-connectivity surfaces supported by skeletons. Eur. Phys. J. B 66, 85–90 (2008). https://doi.org/10.1140/epjb/e2008-00384-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00384-5

PACS

Navigation