Skip to main content
Log in

Ab initio study of the diffusion mechanisms of gallium in a silicon matrix

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present the results of a study into the diffusion mechanisms of Ga defects in crystalline Si using ab initio techniques. Five stable neutral configurations for single and multi-atom defects are identified by density-functional theory (DFT) calculations within the local density approximation and using a localized basis set as implemented in the SIESTA package. Formation energy (E F ) calculations on these stable structures show the most likely neutral single-atom defect to be the Ga substitutional, with an E F of 0.7 eV in good agreement with previous work. Charge state studies show the Ga tetrahedral interstitial defect to be in a + 1 state for most doping conditions. They also indicate the possibility for a gallium substitutional-tetrahedral interstitial complex to act as a deactivating center for the Ga dopants except in n-doped regime, where the complex adopts a − 1 charge state. Migration pathway calculations using SIESTA coupled with the activation relaxation technique (ART nouveau) allow us to determine possible migration paths from the stable configurations found, under various charge states. In general, diffusion barriers decrease as the charge state becomes more negative, suggesting that the presence of Si self-interstitials can enhance diffusion through the kicking out of substitutional Si and by adding negative charge carriers to the system. An overall picture of a possible Ga diffusion and complex formation mechanism is presented based on these results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Biesemans, S. Kubicek, K. De Meyer, Jpn J. Appl. Phys. 35, 1037 (1996)

    Article  ADS  Google Scholar 

  2. C. Parry, T. Whall, E. Parker, J. Appl. Phys. 82, 4990 (1997)

    Article  ADS  Google Scholar 

  3. Y. Sato, I. Sakaguchi, H. Haneda, Jpn J. Appl. Phys. 43, 8024 (2004)

    Article  ADS  Google Scholar 

  4. R. Gwilliam, S. Gennaro, G. Claudio, B. Sealy, C. Mulcahy, S. Biswas, Nucl. Instr. Meth. Phys. Res. B 237, 121 (2005)

    Article  ADS  Google Scholar 

  5. L. Romano, A. Piro, M. Grimaldi, E. Rimini, J. Phys: Cond. Mat. 17 S2279 (2005)

    Article  ADS  Google Scholar 

  6. C. Melis, G.M. Lopez, V. Fiorentini, Appl. Phys. Lett. 85, 4902 (2004)

    Article  ADS  Google Scholar 

  7. L. Romano, A.M. Piro, M.G. Grimaldi, G.M. Lopez, V. Fiorentini, Phys. Rev. B 71 165201 (2005)

    Article  ADS  Google Scholar 

  8. R. Malek, N. Mousseau, Phys. Rev. E 62, 7723 (2000)

    Article  ADS  Google Scholar 

  9. F. El-Mellouhi, N. Mousseau, P. Ordejón, Phys. Rev. B 70 205202 (2004)

    Article  ADS  Google Scholar 

  10. J.M.T. Soler, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  11. J. Junquera, O. Paz, D. Sánchez-Portal, E. Artacho, Phys. Rev. B 64, 235111 (2001)

    Article  ADS  Google Scholar 

  12. E. Anglada, J.M. Soler, J. Junquera, E. Artacho, Phys. Rev. B 66, 205101 (2002)

    Article  ADS  Google Scholar 

  13. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. P. Villar, L. Calvert, Pearson’s Handbook of Crystallographic Data for Intermetallic Phases (ASM International, 1985)

  15. G. Barkema, N. Mousseau, Phys. Rev. Lett. 77, 4358 (1996)

    Article  ADS  Google Scholar 

  16. M. Leslie, M. Gillan, J. Phys. C 18, 973 (1985)

    Article  ADS  Google Scholar 

  17. G. Makov, M. Payne, Phys. Rev. B 51, 4014 (1995)

    Article  ADS  Google Scholar 

  18. J. Shim, E.-K. Lee, Y. Lee, R. Nieminen, Phys. Rev. B 71 035206 (2005)

    Article  ADS  Google Scholar 

  19. C. Castleton, A. Höglund, S. Mirbt, Phys. Rev. B 73, 035215 (2006)

    Article  ADS  Google Scholar 

  20. G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996)

    Article  Google Scholar 

  21. G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169 (1996)

    Article  ADS  Google Scholar 

  22. F. El-Mellouhi, N. Mousseau, J. Appl. Phys. 100 083521 (2006)

    Article  ADS  Google Scholar 

  23. F. El-Mellouhi, N. Mousseau, Phys. Rev. B 74, 205207 (2006)

    Article  ADS  Google Scholar 

  24. D. Caliste, P. Pochet, Phys. Rev. Lett. 97, 135901 (2006)

    Article  ADS  Google Scholar 

  25. F. El-Mellouhi, N. Mousseau, Physica B 401–402 658–661 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levasseur-Smith, K., Mousseau, N. Ab initio study of the diffusion mechanisms of gallium in a silicon matrix. Eur. Phys. J. B 64, 165–172 (2008). https://doi.org/10.1140/epjb/e2008-00296-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00296-4

PACS

Navigation