Skip to main content
Log in

Electronic and optical properties under pressure effect of alkali metal oxides

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We report results of first-principles calculations for the electronic and optical properties under pressure effect of Li2O, Na2O, Ki2O and Rb2O compounds in the cubic antifluorite structure, using a full relativistic version of the full-potential augmented plane-wave plus local orbitals (FP-APW+lo) method based on density functional theory, within the local density approximation (LDA) and the generalized gradient approximation (GGA). Moreover, the alternative form of GGA proposed by Engel and Vosko (GGA-EV) is also used for band structure calculations. The calculated equilibrium lattices and bulk moduli are in good agreement with the available data. Band structure, density of states, and pressure coefficients of the fundamental energy gap are given. The critical point structure of the frequency dependent complex dielectric function is also calculated and analyzed to identify the optical transitions. The pressure dependence of the static optical dielectric constant is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Constitution of Binary Alloys, edited by F.A. Shunk, 2nd Suppl. (McGraw-Hill, New York, 1969)

    Google Scholar 

  2. J.S. Esher, Semiconductors and Semimitals (Academic Press, New York 1981), 15, p. 195

    Google Scholar 

  3. C. Gosh, Phys. Thin Films-Photoemissive Materials 12, 75 (1982)

    Google Scholar 

  4. C.T. Campbell, J. Catal. 94, 436 (1985)

    Article  Google Scholar 

  5. P. Soukiassian, H.I. Starnberg, in Physics and Chemistry of Alkali Metal Adsorption, edited by H.P. Bonzel, A.M. Bradshaw, G. Ertl (Elsevier Amsterdam, 1989), p. 449

  6. M. Jamal, G. Venugopal, M. Shareefuddin, M.N. Chary, Mat. Lett. 39, 28 (1999)

    Article  Google Scholar 

  7. K.I. Chao, S.H. Lee, K.H. Chao, D.W. Shin, Y.K. Sun, J. Power Sour. 163, 223 (2006)

    Article  Google Scholar 

  8. K.B. Lee, M.G. Beaver, H.S. Caram, S. Sircar, J. Power Sources 176, 312 (2008)

    Article  Google Scholar 

  9. H.K. Lee, J.-P. Shim, M.-J. Shim, S.-W. Kim, J.-S. Lee, Mat. Chem. Phys. 45, 243 (1996)

    Article  Google Scholar 

  10. S. Hull, T.W.D. Farley, W. Hayes, M.T. Hutchings, J. Nucl. Mater. 160, 125 (1988)

    Article  ADS  Google Scholar 

  11. Y. Oishi, Y. Kamwei, M. Akuyama, J. Nucl. Mater. 87, 341 (1979)

    Article  ADS  Google Scholar 

  12. E.A. Mikajlo, M.J. Ford, J. Phys. Condens. Matter 15, 6955 (2003)

    Article  ADS  Google Scholar 

  13. E.A. Mikajlo, K.L. Nixon, M.J. Ford, J. Phys. Condens. Matter 15, 2155 (2003)

    Article  ADS  Google Scholar 

  14. E.A. Mikajlo, K.L. Nixon, V.A. Coleman, M.J. Ford, J. Phys. Condens. Matter 14, 3587 (2002)

    Article  ADS  Google Scholar 

  15. L. Liu, V.E. Henrich, W.P. Ellis, I. Shindo, Phys. Rev. B 54, 2236 (1996)

    Article  ADS  Google Scholar 

  16. J. Jupille, P. Dolle, M. Besançon, Surf. Sci. 260, 271 (1992)

    Article  ADS  Google Scholar 

  17. A. Laziki, C.-S. Yoo, W.J. Evans, W.E. Pickett, Phys. Rev. B 73, 184120 (2006)

    Google Scholar 

  18. K. Kunc, I. Loa, A. Grzechnik, K. Syassen, Phys. Stat. Sol. B 242, 1857 (2005)

    Article  ADS  Google Scholar 

  19. R. Dovesi, C. Roetti, C. Freyria-Fara, M. Prencipe, V.R. Saunders, Chem. Phys. 156, 11 (1991)

    Article  Google Scholar 

  20. Ž. Čančarevič, J.C. Schön, M. Jansen, Phys. Rev. B 73, 224114 (2006)

    Google Scholar 

  21. Y.N. Zhuravlev, Y.M. Basalaev, A.S. Poplavnoi, Russ. Phys. J. 44, 398 (2001)

    Article  Google Scholar 

  22. R.D. Eithiraj, G. Jaiganesh, G. Kalpana, Physica B 396, 124 (2007)

    Article  ADS  Google Scholar 

  23. R. Dovesi, Solid. State. Commun. 54, 183 (1985)

    Article  ADS  Google Scholar 

  24. A. Shukla, M. Dolg, P. Fulde, J. Chem. Phys. 108, 8521 (1998)

    Article  ADS  Google Scholar 

  25. P. Goel, N. Choudhury, S.L. Chaplot, Phys. Rev. B 70, 174307 (2004)

    Google Scholar 

  26. J. Garcia Rodeja, M. Mayer, M. Hayoun, Modelling. Simul. Mater. Sci. Eng. 9, 81 (2001)

    Article  ADS  Google Scholar 

  27. M. Wilson, S. Jahn, P.A. Maden, J. Phys. Condens. Matter 16, 2795 (2004)

    Article  ADS  Google Scholar 

  28. M.M. Islam, T. Bredow, C. Minot, J. Phys. Chem. B 110, 9413 (2006)

    Article  Google Scholar 

  29. V. Mauchamp, F. Boucher, G. Ouvrard, P. Moreau, Phys. Rev. B 74, 115106 (2006)

    Google Scholar 

  30. S. Gao, Comp. Phys. Comm. 153, 190 (2003)

    Article  ADS  Google Scholar 

  31. K. Schwarz, J. Sol. St. Chem. 176, 319 (2003)

    Article  ADS  Google Scholar 

  32. G.K.H. Madsen, P. Blaha, K. Schwarz, E. Sjöstedt, L. Nordström, Phys. Rev. B 64, 195134 (2001)

    Google Scholar 

  33. K. Schwarz, P. Blaha, G.K.H. Madsen, Comput. Phys. Commun. 147, 71 (2002)

    Article  MATH  ADS  Google Scholar 

  34. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, An augmented plane wave plus local orbitals program for calculating crystal properties (Vienna University of Technology, Austria, 2001)

    Google Scholar 

  35. J.P. Perdew, A. Zunger, Phys. Rev. B 23, 5048 (1981)

    Article  ADS  Google Scholar 

  36. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  37. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164 (1993)

    Google Scholar 

  38. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  39. F.D. Murnaghan, Prot. Natl. Acad. Sci. USA 30, 244 (1944)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. E. Zintl, A. Harder, B. Dauth, Z. Elektrochem. 40, 588 (1934)

    Google Scholar 

  41. G. Onida, L. Reining, A. Rubio, Rev. Mod. Phys. 74, 601 (2002)

    Article  Google Scholar 

  42. S. Fahy, K.J. Chang, S.G. Louis, M.L. Cohen Phys. Rev. B 35, 7840 (1989)

    Google Scholar 

  43. P. Dufek, P. Blaha, K. Schwarz, Phys. Rev. B 50, 7279 (1994)

    Article  ADS  Google Scholar 

  44. Y. Ishii, J. Marakami, M. Itoh, J. Phys. Soc. Jpn 68, 2236 (1999)

    Google Scholar 

  45. G.Q. Lin, H. Gong, P. Wu, Phys. Rev. B 71, 85203 (2005)

    Google Scholar 

  46. F. Belmekhlouf, A. Becheri, N. Bouarissa, Sol. State Electron. 47, 1135 (2003)

    Google Scholar 

  47. R.D. Eithiraj, G. Jaiganesh, G. Kalpana, M. Rajagopalan, Phys. Sat. Sol. (b) 244, 1337 (2007)

    Article  Google Scholar 

  48. V. Kanchana, G. Vaitheeswaran, M. Rajagopalan, Physica B 328, 283 (2003)

    Article  ADS  Google Scholar 

  49. G. Kalpana, B. Palanivel, M. Rajagopalan, Phys. Rev. B 52, 4 (1995)

    Article  ADS  Google Scholar 

  50. C. Ambrosch-Draxl, J.O. Sofo, Comput. Phys. Commun. 175, 1 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Khenata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moakafi, M., Khenata, R., Bouhemadou, A. et al. Electronic and optical properties under pressure effect of alkali metal oxides. Eur. Phys. J. B 64, 35–42 (2008). https://doi.org/10.1140/epjb/e2008-00286-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00286-6

PACS

Navigation