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Abstract. We evaluate the probability that a Boolean network returns to an attractor after perturbing h
nodes. We find that the return probability as function of h can display a variety of different behaviours,
which yields insights into the state-space structure. In addition to performing computer simulations, we
derive analytical results for several types of Boolean networks, in particular for Random Boolean Networks.
We also apply our method to networks that have been evolved for robustness to small perturbations, and
to a biological example.

PACS. 89.75.Hc Networks and genealogical trees – 05.45.-a Nonlinear dynamics and chaos – 89.75.Fb
Structures and organization in complex systems

1 Introduction

Boolean networks (BN) are used to model the dynamics
of a wide variety of complex systems, ranging from neu-
ral networks [1] and social systems [2] to gene regulation
networks [3], sometimes combined with evolutionary pro-
cesses [4]. BN are composed of interacting nodes with bi-
nary states, typically 0 and 1, coupled among each other.
The state of each node evolves according to a function
of the states observed in a certain neighbourhood, similar
to what is done when using cellular automata [5], but in
contrast to cellular automata, BN have no regular lattice
structure, and not all nodes are assigned the same update
function.

Usually, BN models are studied using deterministic dy-
namical rules. After a transient time, these networks reach
attractors, which are a sequence of periodically repeated
states. The number and length of such attractors is an
important property investigated in BNs. Of equal impor-
tance are the sizes of the basins of attraction of these
attractors, which are the sets of states leading to the at-
tractors. Some networks may contain periodic sequences
in state space that are not “attractors” in the strict sense,
because there are no states outside this sequence that are
attracted to it. However, in this paper we do not make this
distinction, and we call all sequence periodically repeated
sequences of states “attractor”.

Real networks are often influenced by noise, since
molecule concentrations may be small (e.g., in biological
systems [6]) or behaviour may be unpredictable (e.g., in
social systems). For this reason, it is important to inves-
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tigate how robust the behaviour found under determin-
istic update rules is when noise is added. Examples for
such studies are Ising-like models placed on a network
topology [7,8], BN with a probabilistic rule for choosing
the update function at each time step [9], models with
stochastic update sequences [10] and small stochastic de-
lays in the update time [11]. These stochastic models can
lead to surprising new results. For instance, for stochastic
update sequences it could be shown that the number of
attractors (now defined as a recurrent set of states) grows
like a power law [10,11] as function of the network size,
while it grows superpolynomially for parallel update.

In this paper, we investigate the effect of a perturba-
tion on a BN that is updated in parallel and that is on an
attractor. The quantity we evaluate is the probability that
the network returns to the same attractor after the pertur-
bation, as a function of the size of the perturbation, i.e.,
of the number of nodes the states of which are changed.
This leads to a curve that is characteristic of the network
and is strikingly different for different types of networks.

The outline of this paper is as follows: first, we in-
vestigate two types of simple networks, namely networks
consisting of independent nodes and networks consisting
of a single loop of nodes. The results then help to under-
stand the behaviour of Random Boolean Networks under
perturbations, which are studied in Section 3 dealing with
frozen, critical and chaotic networks. In Section 4, we then
investigate a few specific networks, which are not random
networks, and we find that their characteristic curves are
very different from those of random networks, reflecting
for instance the higher robustness to perturbations. Fi-
nally, we summarize and discuss our findings in Section 5.
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2 Simple networks

2.1 Independent nodes

Let us first consider a system of N independent nodes.
Then the response of each node to the perturbation is
independent of the response of the other nodes. The state
of each of the N nodes at time t + 1 is determined by its
state at time t. There are 4 possibilities to assign to such
a node an update function: (i) the state of the node is
0 irrespective of the state at the previous time step; (ii)
the state of the node is 1 irrespective of the state at the
previous time step; (iii) the state of the node at time t+1
is identical to the state at time t; (iv) the state of the node
at time t + 1 is the opposite of the state at time t. This
means that the node alternates between 0 and 1. The first
two update functions are constant functions, the third is
the “copy” function, the fourth the “invert” function.

We generate a network by assigning update functions
to the N nodes. We then initialize the network in a ran-
domly chosen state and wait until it reaches an attractor.
In the simple networks considered here, an attractor is
reached after one time step. Unless no “invert” function
is chosen, the period of the attractor is 2. When a node is
perturbed, its response depends on its update function: if
the update function is constant, the node returns in the
next time step to its previous value. If the update func-
tion is “copy”, the node remains in its new state and does
not return to its previous state. If the update function is
“invert”, the node continues to oscillate between 1 and 0,
however with a phase shift of one time step.

When we perturb h nodes, the network returns to the
attractor only if all perturbed nodes have a constant func-
tion, or if all nodes with an “invert” function are perturbed
but none with a “copy” function. Let us focus on the case
that N is large and that each of the four update functions
is assigned to one quarter of the nodes. The probability
that the network returns to its previous attractor after
perturbing h nodes is then

Pret(h) =

(
N/2

h

)

(
N
h

) , (1)

which can be approximated by

Pret(h) � 1
2h

(2)

for h/N � 1. For h > N/2, the return probability is
0, since it is no longer possible that all perturbed nodes
have constant functions. For N/4 ≤ h ≤ 3N/4, it is in
principle possible that all nodes with “invert” functions
but none with “copy” functions are perturbed, however,
the probability that this occurs is so small that we neglect
it here.

For general networks, the return probability has to be
evaluated by averaging over different initial states, how-
ever, in the special case considered here the return prob-
ability is the same for each initial state.
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Fig. 1. Pret(h) (in percent) of a set of independent nodes
as given by equation (1), the dashed line is obtained using
equation (2).

Fig. 2. A loop of seven nodes.

The most important result of this subsection is that
for small perturbations the return probability is simply
given by an exponential dependence

Pret(h) = Pret(1)h .

This result will be generally true for small h whenever
perturbations at different nodes decay independently from
each other. For this reason, we will see an exponential
decrease in the examples below when N is large and h is
small.

2.2 Simple loops

Now, let us consider a simple loop of N nodes.
Each node is connected to its predecessor on the loop,

and the update function of each node is either “copy” or
“invert”. A constant function at one node will freeze the
whole loop, in which case Pret = 1 for all h, and we there-
fore focus on the more interesting case of no constant func-
tion in the loop. A loop with n inversions can be mapped
bijectively onto one with (n − 2) inversions by replacing
two “invert” with two “copy” functions and by inverting
the values of all nodes between these two couplings. It is
therefore sufficient to distinguish loops with an even or an
odd number of inversions, and we call them “even” and
“odd” loops respectively. When discussing even loops, we
consider loops with only “copy” functions. To odd loops
we assign one “invert” function and N − 1 “copy” func-
tions. An even loop with a prime number of nodes returns
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Fig. 3. Pret(h)(in percent) for an even loop with N = 7.

to its initial state after N time steps. If N is not prime,
shorter periods exist. Furthermore, if all nodes have the
same state, the loop is on a fixed point. An odd loop with
a prime number of nodes returns to its initial state af-
ter 2N time steps. An odd loop has no fixed points. The
shortest attractor has period 2, with alternating 1’s and
0’s.

Figure 3 shows Pret for an even loop with N = 7, as
obtained from computer simulations.

The return probability is 0 for all odd values of h,
and it has the same nonzero value for all even h larger
than 0. This happens for all even loops with N being a
prime number, as we show in the following. If h nodes are
perturbed, the loop returns to the same attractor only if
the perturbation leads it to another state of this attractor.
All states of the same attractor have the same sequence of
0s and 1s, but rotated around the loop by some number
of steps. Only by inverting an identical number of 0s and
1s can we stay on the same attractor, and this explains
why Pret is nonzero only for even h. Now, by fixing the
nodes that are to be perturbed and by fixing the number
m of steps by which the perturbation of these nodes shall
rotate the attractor, we uniquely fix the attractor (apart
from an inversion of all nodes). This attractor is found by
fixing the state of one node to 1 (or 0) and by requiring
that the node m steps ahead has the same state if the
first node is not a perturbed node, and the opposite state
if the first node is a perturbed node. Then we determine
in the same way the state of the node m steps further,
and so on, until the state of all nodes is fixed. Since N is
a prime number, we do not return to the first node before
all other nodes have been visited. The probability to be
still on the same attractor after perturbing h nodes is for
even h therefore

Pret =
2(N − 1)

2N
, (3)

which is the number of configurations that are rotated by
m = 1, . . .N − 1 steps under the perturbation, divided by
the total number of configurations of the loop. If N is not
a prime number, there are attractors of different length,
and the function Pret(h) depends in a more complicated
way on N .

For an odd loop with prime N , Pret is 1 for h = 0 and
h = N , and has otherwise the value Pret = 2(N − 1)/2N .
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Fig. 4. Pret(h)(in percent) of an odd loop N = 7.

This result is obtained in a similar way as for even loops:
The loop remains on the same attractor after perturbing h
nodes, if the state generated by the perturbation is among
the 2N−2 different states assumed by the loop during the
next 2N − 1 time steps, but not after N steps (where the
state of all nodes is simply inverted, which can only be
achieved for h = N). If we fix the nodes to be perturbed
and the number m of time steps between the unperturbed
and the perturbed state, we can uniquely identify the at-
tractor by fixing the state of one node and then stepping
around the loop in steps of size m, assigning to each node
the same state as to the previous node if the previous node
is not among the perturbed nodes and if the “invert” func-
tion is not between the two nodes. Otherwise, the inverted
state is assigned.

2.3 Collections of several loops

If the network consists of several independent loops, the
periods of the attractors are the least common multiples
of the periods of the loops. Obviously, a collection of loops
can remain on the same attractor after a perturbation only
if the perturbation produces a state that corresponds to
a future state of the loop, but not a state that is not
part of the state sequence on this loop. If all loop lengths
are different from each other and have no common divi-
sor, every combination of future loop states belongs to the
same attractor, and the return probability is identical to
the probability that the perturbation generates only such
states. Otherwise, if there are two or more loops with pe-
riods that have a common divisor, the perturbation must
advance all these loops by a multiple of this divisor if the
system shall remain on the same attractor. Since the an-
alytical expressions for Pret become complicated and do
not provide special insight, we omit them here. We only
note that the function Pret(h) depends strongly on the
lengths and number of loops, and on the common divisors
of their lengths.

3 Random boolean networks

A random Boolean network (RBN) is constructed by
choosing for each node at random k nodes from which
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it receives its input, and an update function that assigns
to each of the 2k states of the k input nodes an output 1
or 0. The update function of each node is chosen at ran-
dom among all 22k

possible update functions [12,13]. All
nodes are updated in parallel. Depending on the value of
k and the probabilities assigned to the different update
functions, the dynamics of the network is either in the
frozen or in the chaotic phase. At the boundary between
the two are critical networks. If all update functions are
assigned the same probability, RBNs with k = 1 are in the
frozen phase, networks with k = 2 are critical, and net-
works with k > 2 are chaotic. In the following, we consider
perturbations of these three types of networks.

3.1 RBNs in the frozen phase

In the frozen phase, all nodes apart from a small number
(that remains finite in the limit of infinite system size)
assume a constant value after a transient time. If in the
stationary state the value of one node is changed, this per-
turbation propagates during one time step on average to
less than one other node. If all nodes that become frozen
after some time are removed from the network, there re-
main the nonfrozen nodes. In the limit N → ∞, it can be
shown that these nonfrozen nodes are connected to sim-
ple loops (the “relevant loops”) with trees rooted in the
loops [19]. The nodes in the trees are slaved to the dy-
namics on the loops, and the perturbation of a node on a
tree does not induce a change of the attractor. The per-
turbation of a frozen node can affect a couple of other
nodes to which the perturbation may propagate. If these
other nodes are also frozen or part of a nonfrozen tree,
they will soon return to the behaviour they showed before
the perturbation. However, if the perturbation affects a
node sitting on a relevant loop, the attractor will usually
be changed. If we denote with pr the probability that the
perturbation of one node will affect a node on a relevant
loop, we obtain Pret(h) = (1−pr)h for small h. In the limit
N → ∞, the probability pr must become proportional to
1/N , since the number of nodes on relevant loops remains
finite in this limit.

From these properties of frozen networks in the limit
of large N , we can conclude that Pret(h) is close to 1 for
h � N , since the probability of perturbing one of the rel-
evant nodes is very small. When h becomes of the order
of Npr, relevant nodes are perturbed with a considerable
probability, and the shape of the function Pret(h) depends
on the properties of the relevant loops. The size and num-
ber of relevant loops is in general different in different
networks. From our discussion in the previous section for
collection of independent loops, we conclude that there is
no self-averaging of Pret(h) in the limit of large N . Also,
the probability that the number of relevant nodes is 0 ap-
proaches a nonzero constant in the limit N → ∞, and
therefore some networks always have a constant return
probability Pret(h) = 1.

Figure 5 shows the result of a computer simulation of
three networks in the frozen phase. Half of the nodes were
assigned the value k = 1 and half of the nodes the value
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Fig. 5. Pret(h)(in percent) of three frozen networks N =
200, 〈k〉 = 1.5.

k = 2. (This combination of k values was chosen because
networks with k = 1 are almost always completely frozen.
Even for the value 〈k〉 = 1.5, only few networks were not
completely frozen.) One can see the initial exponential de-
cay and the broad range of curve shapes when h/N is not
small anymore. The behaviour of the curves when h ap-
proaches N depends on the probability that the inversion
of the state of all nodes leaves the network in the same
basin of attraction. As we can see in this and other figures
in this paper, this probability varies widely between net-
works and is not rarely larger than Pret(N/2). The fact
that Pret(h) does not approach the value 1 for small h
is due to the small network size. In the thermodynamic
limit, we expect limN→∞ Pret(h) = 1 for any fixed h.

3.2 RBNs in the chaotic phase

In the chaotic phase, a non-vanishing proportion of all
nodes remains nonfrozen even after long times. Initially
similar configurations diverge exponentially, until they dif-
fer from each other as much as two random states (not
considering the frozen nodes, the proportion of which de-
creases rapidly with the distance from the critical point).
Attractors are usually long, and their number is much
smaller that that of critical systems. Therefore, the prob-
ability that two different initial configurations end up on
the same attractor, is considerable (see below). Neverthe-
less, the overlap between different states of the same at-
tractor is not larger than that of states on different at-
tractors.

Networks with k = N are easiest to understand among
the chaotic networks, since the successor of each network
state is a randomly chosen other network state [15]. In
state space, we have therefore a “network” with one ran-
domly chosen “input” (i.e. successor) for each “node” (i.e.,
state). In such a k = N network, every perturbation leads
the network anywhere in state space, and we therefore ex-
pect Pret(h) to be a constant function, with the exception
of the value 1 at h = 0. The average value of this con-
stant can be determined from what is known for k = N
networks: the value of Pret on the plateau is given by the
average probability that a randomly chosen state in state
space belongs to the same basin of attraction as the ran-
domly chosen initial network state. We define the weight
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Fig. 6. Pret(h) (in percent) of three chaotic networks with
N = 60, k = 3. The value of the plateau of these three networks
happens to be below the average plateau value 2/3 determined
further below.

wρ of an attractor ρ as the length of the attractor plus
the number of basin states draining into that attractor,
normalized by the size of the state space (2N ), so that∑

ρ wρ = 1 [16]. We therefore have

Pret =
∑

ρ

w2
ρ. (4)

In the limit N → ∞, the average number of attractors
with a weight between w and w + dw is given by [16,17]

g(w) =
1

2w
√

1 − w
, (5)

leading to

Pret =
∫ 1

0

g(w)w2dw =
2
3

. (6)

This analytical result applies to the ensemble average of
all networks with k = N . In a given network, the value
of the plateau usually deviates from 2/3, since always a
few large basins dominate the value of Pret, and the val-
ues w of these basins differ between networks even in the
thermodynamic limit.

Now, let us turn to chaotic networks with fixed k
(smaller than N), for which no such analytical results are
known. Figure 6 shows Pret as function of h for three net-
works with k = 3 and N = 60. We see a plateau for h > 2,
which means that perturbing one or two nodes does not
yet necessarily carry the network to a random state, but
perturbing several nodes does. The reason for this is that a
certain proportion of nodes in chaotic networks with fixed
k assume a constant value after some time, and perturbing
only such nodes may not change the attractor. For larger
h, it becomes very likely that relevant nodes are changed
by a perturbation, and then the situation is similar as in
k = N networks, which have no frozen core.

Chaotic networks with fixed value of k and large N
have been shown to share many properties with chaotic
k = N networks. From [16], it appears that chaotic net-
works with k < N have the same set of basin weights as
those with k = N , which would mean that the average
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Fig. 7. Probability distribution of the value Pret(10) for ap-
proximately 10000 networks of size N = 20, for different values
of k.

height of the plateau should be the same for all chaotic
networks in the thermodynamic limit. We tested this as-
sumption by simulating smaller networks (of size 20) on
the computer for k = 3, 4 and 5. The average of the return
probability for a perturbation of size N/2 = 10 over ap-
proximately 10 000 networks is Pret(10) = 0.6764, 0.675,
0.6735, 0.6686 and 0.6675 for k = 3, 4, 5, 6, 9 respectively.
These values are impressively close to 2/3 given the small
system size. For larger k, the value is closer to 2/3, because
the number of nonfrozen nodes and therefore the size of
the (nontrivial part of the) state space increases with in-
creasing k. We also simulated systems with larger values
of N , however, it is very hard to obtain good statistics
for larger N because the size of the state space and the
length of attractors increase exponentially with N . From
the data we have it appears that the value of the plateau
moves closer to 2/3 with increasing N . Figure 7 shows
the probability distributions of Pret(10), from which the
above-mentioned averages have been obtained. This dis-
tribution is very broad and does not appear to become
narrower for larger N . There is no self-averaging of the
plateau value of Pret.

In summary, we find that chaotic networks with large
N have a return probability Pret(h) that decays rapidly for
small h and then reaches a plateau, the ensemble average
of which lies at 2/3.

3.3 Critical RBNs

Critical networks are at the boundary between the frozen
and chaotic phase, and neighbouring configurations di-
verge only algebraically with time. Just as frozen net-
works, they have a large frozen core. For large N , the
number of nodes that do not become frozen after some
time, is proportional to N2/3 [19]. Most of them are ir-
relevant for determining the attractors. When the frozen
core is removed from the network, the remaining nodes are
connected to relevant components, most of which are sim-
ple loops and all of which contain loops, and with trees
rooted in these loops. The number of nodes in the rele-
vant components is proportional to N1/3 for large N . The
mean number of nodes affected by the perturbation of a
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Fig. 8. Pret(h)(in percent) of three critical networks N =
100, k = 2.

single node is ∼N1/3 for large N . The probability that a
perturbation of size h = 1 affects a relevant node is given
by the probability ∼N−2/3 that a given node is affected
by the perturbation, times the number of relevant nodes,
Pret(1) � aN−1/3. We therefore obtain

Pret(h) � (aN−1/3)h (7)

for h � N1/3. This exponential decay can be seen in Fig-
ure 8 for small h. For h > N1/3, the probability of per-
turbing a relevant node is not small anymore, and Pret

reaches a plateau. A rough estimate of the dependence on
N of the value of Pret on the plateau is obtained by the fol-
lowing reasoning: the number of attractors increases with
N roughly as 2N1/3

, and the basins of attraction have a
size of the order 2N/2N1/3

. Using equation (4), this gives
the estimate Pret ∼ 2−bN1/3

on the plateau with some
constant b. The height of the plateau decreases rapidly
with increasing N because of the vast number of different
attractors of comparable basin size.

Taking these results together, we expect that in large
critical networks the function Pret(h) decays from 1 to a
value close to 0 when h increases from 0 to N1/3 and then
stays on this plateau as h increases further. The value of
plateau decreases as an exponential function of −N1/3.
However, it is known that the scaling with N2/3 and N1/3

of the nonfrozen and relevant nodes becomes clearly visi-
ble only in huge networks (of the order 106), and smaller
networks may show broad distributions in the numbers of
these nodes. Figure 8 shows three examples of Pret for crit-
ical networks. For such small networks sizes, the critical
features of Pret(h) derived for the thermodynamic limit
cannot yet be seen.

4 Some specific networks

In the ensemble of all random networks of a not too large
size, there are some networks whose characteristic curves
are very different from conventional ones, as shown in the
next two figures.

The first curve is that of a very robust network, which
additionally has the property of returning more easily to
the original attractor when the perturbation is larger.
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Fig. 9. Pret(h) (in percent) of a critical network with N =
100, k = 2.
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Fig. 10. Pret(h) (in percent) of another critical network with
N = 300, k = 2.

The second curve is that of a network that has no
plateau but a very extended decrease of Pret with h. A
closer inspection of this network reveals that, although its
parameter values classify it as critical, there is no frozen
core but all nodes are relevant and part of a single complex
relevant component. This means that the state space is
far from random, and that perturbations of different sizes
carry the network to different regions in state space.

Let us compare the first curve to that of networks
that have been evolved for robustness to small pertur-
bations [18], shown in Figure 11. These networks have
been evolved by modifying the connections and functions
and by selecting for a high probability of returning to the
same attractor after perturbing one node. Interestingly,
although only a large value of Pret(1) has been imposed
in the system, Pret is very high for all perturbation sizes.
Many networks obtained by the same procedure even show
Pret(h) = 1 for all h.

The network used for producing Figure 12 is the core
part of cell cycle regulation network of budding yeast, as
represented in [20]. An important property of this network
is that it has a prominent fixed point attracting 86% of all
network states. The diagram shows the surprising feature
that Pret(h) has its minimum at h = 1. This means that
the main attractor, which is a fixed point, is not very
stable under perturbations of one node. Further analysis
shows that there are three other fixed points that differ
from the main fixed point by the state of only one node.
As suggested in [20], the cell is likely to be waiting for
a new input when the network is at its fixed point. This
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Fig. 11. Pret(h) (in percent) of a network of 60 nodes evolved
for robustness.
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Fig. 12. Pret(h) (in percent) of the cell cycle regulation net-
work of budding yeast.

might explain why this fixed point is rather sensitive to
small perturbations.

5 Conclusions

In this paper, we have evaluated the probability Pret(h)
that a Boolean network returns to an attractor after per-
turbing h nodes, averaged over different initial states of
the network. We found that Pret(h) can display a variety of
different shapes, which yields insights into the state-space
structure. If the response of the network to the perturba-
tion of several nodes is independent for each perturbed
node, Pret(h) decays exponentially with h for small h.
Larger perturbations are of course not independent, and
if the perturbation leads the system to a random place in
state space, Pret(h) shows a plateau for these perturbation
sizes. When the size of the perturbation approaches the
total number of nodes, Pret(h) can shown various types of
behaviour, including a decrease to zero or an increase to
a value larger than the plateau. The reason is that the re-
sponse to inverting the state of all nodes depends strongly
on the network structure. We obtained analytical results
for Random Boolean Networks in the limit of large N . For
critical networks, Pret(h) decreases rapidly to (almost) 0
for large N . For chaotic and frozen networks, Pret(h) re-
mains nonzero for large N and is not self-averaging, which
means that the shape of Pret(h) differs widely between
different networks. The ensemble average of the plateau
value of Pret for chaotic networks is 2/3 for large N . The

fact that this plateau value is much higher than in criti-
cal networks means that chaotic networks are more robust
than critical networks when perturbations affect a nonva-
nishing proportion of all nodes. The reason for this is that
chaotic networks have a much smaller number of attrac-
tors than critical networks, and therefore the probability
that a perturbation carries the network into the basin of
attraction of a different attractor is larger in critical net-
works than in chaotic networks. Similarly interesting and
surprising is the result that a biological network that has
been characterized as being very robust is pretty sensitive
to perturbations of size h = 1, while Pret is much larger for
larger perturbations. It remains to be seen if this feature
occurs also in other biological networks.

To conclude, characterizing the dynamical stability of
networks by a function Pret(h) gives far more information
about the state space structure of the network than using
a single number, such as the average “sensitivity” of nodes.

We thank C. Hamer for programming the yeast network and
T. Mihaljev for useful discussions.
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